Game & Strategies in Type Theory

Peio Borthelle, USMB, Chambéry, France w/ Tom Hirschowitz & Guilhem Jaber & Yannick Zakowski

TYPES 2023 - Valencia

Motivations

PROGRAM EQUIVALENCE

Goal

Study higher-order programming languages with effects such as non-termination starting from their operational semantics.

PROGRAM EQUIVALENCE

Goal

Study higher-order programming languages with effects such as non-termination starting from their operational semantics.

Contextual Equivalence

"a and b are observationally indistinguishable"

$$a \simeq_{\mathsf{ctx}} b := \forall E, E[a] \simeq_{\mathsf{op}} E[b]$$

1

PROGRAM EQUIVALENCE

Goal

Study higher-order programming languages with effects such as non-termination starting from their operational semantics.

Contextual Equivalence

"a and b are observationally indistinguishable"

$$a \simeq_{\mathsf{ctx}} b := \forall E, E[a] \simeq_{\mathsf{op}} E[b]$$

We want an easier-to-check \simeq_{M} such that

$$a \simeq_{\mathsf{M}} b \implies a \simeq_{\mathsf{ctx}} b$$

1

Operational Game Semantics

Trace Semantics

- · Sequences of observations of an execution.
- · "perform an effect", "call a free variable", "return a value"

An example: OGS

- In the spirit of process calculi: keep the labels first-order.
- Computations¹ are hidden as fresh variables.
- We don't observe full values but only patterns.

¹functions, thunks ... CBPV negative types

Our Contribution

- · A generic account of Operational Game Semantics.
- Implemented and proved correct in Coq.

Our Contribution

Formalization

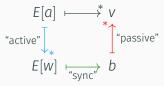
Given an evaluator "term $\rightarrow \mathcal{D}(nf)$ ":

- Construct the OGS LTS;
- · Show it correct for contextual equivalence.

Crux of the proof

$$\llbracket E[a] \rrbracket \approx_M \llbracket E \rrbracket \parallel \llbracket a \rrbracket$$

assuming the evaluator verifies:



Technical Choices

Intensional representations

- LTS more intensional than prefix-closed set of traces
- · coalgebraic LTS compute more than relational LTS
- ⇒ guarded coinduction in Type using negative records
- ⇒ coinduction-up-to in Prop using Coq-Coinduction²

Rigid structures

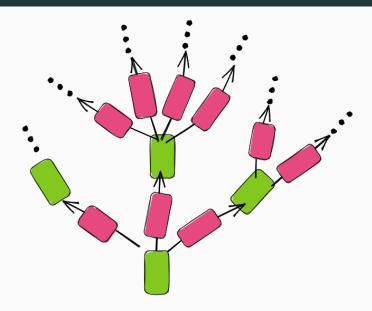
- dependent variant of interaction trees³
- well-typed & well-scoped variables
- ⇒ dependent programming in CoQ using CoQ-EQUATIONS⁴

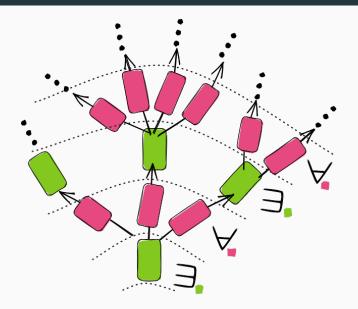
²by Damien Pous

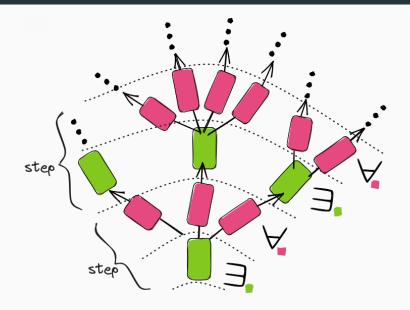
³original by Li-Yao Xia et al.

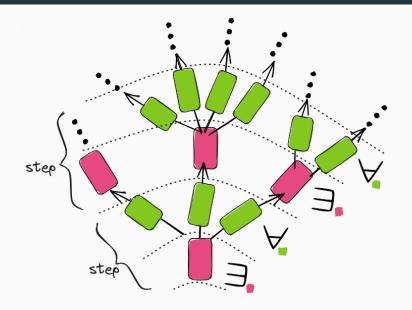
⁴by Matthieu Sozeau

What are game rules?









Simple Strategies, Formally

$$Step_P, Step_O : \mathbf{SET} \to \mathbf{SET}$$
 $Step_P \ X := M_P \times (M_O \to X)$ player step
 $Step_O \ X := M_O \times (M_P \to X)$ opponent step

Building Blocks

$$Act_M, Pas_M : \mathbf{SET} \to \mathbf{SET}$$
 $Act_M \ X := M \times X$ active half-step
 $Pas_M \ X := M \to X$ passive half-step
 $sync_M : Act_M \ X \times Pas_M \ Y \to X \times Y$ interaction law

Simple Strategies, Formally

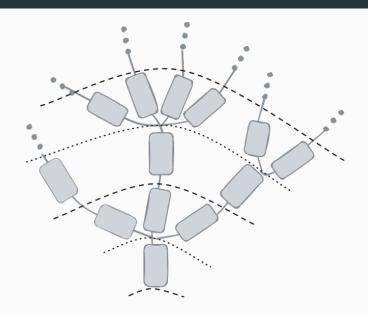
$$Step_P, Step_O : \mathbf{SET} \to \mathbf{SET}$$
 $Step_P \ X := M_P \times (M_O \to X)$ player step
 $Step_O \ X := M_O \times (M_P \to X)$ opponent step

Building Blocks

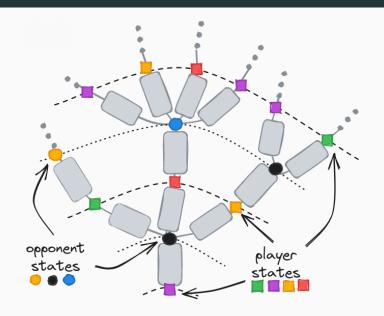
$$Act_M, Pas_M : \mathbf{SET} \to \mathbf{SET}$$
 $Act_M \ X := M \times X$ active half-step
 $Pas_M \ X := M \to X$ passive half-step
 $sync_M : Act_M \ X \times Pas_M \ Y \to X \times Y$ interaction law

Pretty nice, but not very expressive.

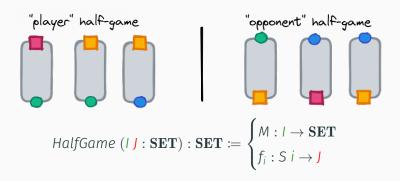
More *Precise* Strategies



More *Precise* Strategies



Two Bi-Indexed Sets⁵



Act, Pas:
$$(J \to \mathbf{SET}) \to (I \to \mathbf{SET})$$

Act $Xi := (s : Mi) \times X (f_i s)$ active half-step
Pas $Xi := (s : Mi) \to X (f_i s)$ passive half-step
sync: $\Sigma_i(Act Xi \times Pas Yi) \to \Sigma_i(Xj \times Yj)$ interaction law

⁵See also Paul Levy & Sam Staton: Transition systems over games

From pairs of "half-games" to indexed containers

$$Game(IJ : SET) : SET := \begin{cases} P : HalfGame IJ \\ O : HalfGame JI \end{cases}$$

- $Act_P \circ Pas_0 : PolyEndo(I \rightarrow \mathbf{SET})$, player point of view
- $Act_{0} \circ Pas_{P} : PolyEndo(J \rightarrow \mathbf{SET})$, opponent point of view

Moral: containers loose information

- In containers, implicitely $J = (i : I) \times M_P$.
- · Let's cut containers in half!

Tree constructions

Classical container fixpoints

Given the "tiles", how are we allowed to combine them?

Classical container fixpoints

Given the "tiles", how are we allowed to combine them?

U: inductive trees

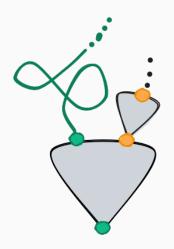
- · "any combination of finite depth"
- "any algebra of the step-functor"

V: coinductive trees

- "any combination"
- "any coalgebra of the step-functor"

Fixpoints, continued

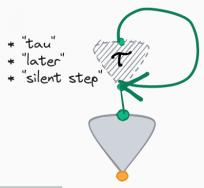
But we also need these!



Completely Iterative Monads⁶

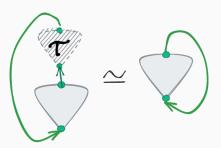
Interaction Trees! (no fancy greek letter for this fixpoint yet)

- "any combination with arbitrary loops"
- "any iterative algebra of the step-functor"
- "any coalgebra of 'Step + Id' modulo weak bisimilarity"



⁶See extensive work by Stefan Milius

Indexed Interaction Trees



Weak bisimilarity skips over any finite number of τ nodes

⇒ Mixed inductive-coinductive, but not a problem for Coq-Coinduction!

Conclusion

Contributions

- Formalized generic soundness theorem for operational game semantics.
- · New datastructure: indexed interaction trees.

Ongoing & future work

- Clarify the categorical structure of "games" and "half-games".
- Fully formalized game semantics.

Conclusion

Contributions

- Formalized generic soundness theorem for operational game semantics.
- · New datastructure: indexed interaction trees.

Ongoing & future work

- Clarify the categorical structure of "games" and "half-games".
- Fully formalized game semantics.

Thanks for listening!

Composition of dual strategies

