
Game & Strategies in Type Theory

Peio Borthelle, USMB, Chambéry, France
w/ Tom Hirschowitz & Guilhem Jaber & Yannick Zakowski
TYPES 2023 – Valencia



Motivations



Program Equivalence

Goal
Study higher-order programming languages with effects such
as non-termination starting from their operational semantics.

Contextual Equivalence
“a and b are observationally indistinguishable”

a 'ctx b := ∀E, E[a] 'op E[b]
💀🤬

We want an easier-to-check 'M such that

a 'M b =⇒ a 'ctx b

1



Program Equivalence

Goal
Study higher-order programming languages with effects such
as non-termination starting from their operational semantics.

Contextual Equivalence
“a and b are observationally indistinguishable”

a 'ctx b := ∀E, E[a] 'op E[b]

💀🤬

We want an easier-to-check 'M such that

a 'M b =⇒ a 'ctx b

1



Program Equivalence

Goal
Study higher-order programming languages with effects such
as non-termination starting from their operational semantics.

Contextual Equivalence
“a and b are observationally indistinguishable”

a 'ctx b := ∀E, E[a] 'op E[b]
💀🤬

We want an easier-to-check 'M such that

a 'M b =⇒ a 'ctx b
1



Operational Game Semantics

Trace Semantics

• Sequences of observations of an execution.
• “perform an effect”, “call a free variable”, “return a value”

An example: OGS

• In the spirit of process calculi: keep the labels first-order.
• Computations1 are hidden as fresh variables.
• We don’t observe full values but only patterns.

1functions, thunks … CBPV negative types

2



Our Contribution

• A generic account of Operational Game Semantics.
• Implemented and proved correct in Coq.

3



Our Contribution

Formalization
Given an evaluator “term → D(nf)”:
• Construct the OGS LTS ;
• Show it correct for contextual equivalence.

Crux of the proof
JE[a]K ≈M JEK ‖ JaK

assuming the evaluator verifies:

E[a] v

E[w] b

∗

∗

∗
“active” “passive”

“sync”

4



Technical Choices

Intensional representations

• LTS more intensional than prefix-closed set of traces
• coalgebraic LTS compute more than relational LTS

⇒ guarded coinduction in Type using negative records
⇒ coinduction-up-to in Prop using Coq-Coinduction2

Rigid structures

• dependent variant of interaction trees3

• well-typed & well-scoped variables
⇒ dependent programming in Coq using Coq-Equations4

2by Damien Pous
3original by Li-Yao Xia et al.
4by Matthieu Sozeau 5



What are game rules?



Two Sets

6



Two Sets

6



Two Sets

6



Two Sets

6



Simple Strategies, Formally

StepP, StepO : SET → SET
StepP X := MP × (MO → X) player step
StepO X := MO × (MP → X) opponent step

Building Blocks

ActM,PasM : SET → SET
ActM X := M× X active half-step
PasM X := M→ X passive half-step
syncM : ActM X × PasM Y → X × Y interaction law

Pretty nice, but not very expressive.

7



Simple Strategies, Formally

StepP, StepO : SET → SET
StepP X := MP × (MO → X) player step
StepO X := MO × (MP → X) opponent step

Building Blocks

ActM,PasM : SET → SET
ActM X := M× X active half-step
PasM X := M→ X passive half-step
syncM : ActM X × PasM Y → X × Y interaction law

Pretty nice, but not very expressive.
7



More Precise Strategies

8



More Precise Strategies

8



Two Bi-Indexed Sets5

HalfGame (I J : SET) : SET :=

M : I→ SET
fi : S i→ J

Act,Pas : (J→ SET) → (I→ SET)
Act X i := (s : M i)× X (fi s) active half-step
Pas X i := (s : M i) → X (fi s) passive half-step
sync : Σi(Act X i× Pas Y i) → Σj(X j× Y j) interaction law

5See also Paul Levy & Sam Staton: Transition systems over games
9



From pairs of “half-games” to indexed containers

Game (I J : SET) : SET :=

P : HalfGame I J

O : HalfGame J I

• ActP ◦PasO : PolyEndo(I→ SET), player point of view
• ActO ◦PasP : PolyEndo(J→ SET), opponent point of view

Moral: containers loose information

• In containers, implicitely J = (i : I)×MP.
• Let’s cut containers in half!

10



Tree constructions



Classical container fixpoints

Given the “tiles”, how are we allowed to combine them?

μ: inductive trees
• “any combination of finite depth”
• “any algebra of the step-functor”

ν: coinductive trees
• “any combination”
• “any coalgebra of the step-functor”

11



Classical container fixpoints

Given the “tiles”, how are we allowed to combine them?

μ: inductive trees
• “any combination of finite depth”
• “any algebra of the step-functor”

ν: coinductive trees
• “any combination”
• “any coalgebra of the step-functor”

11



Fixpoints, continued

But we also need these!

12



Completely Iterative Monads6

Interaction Trees! (no fancy greek letter for this fixpoint yet)

• “any combination with arbitrary loops”
• “any iterative algebra of the step-functor”
• “any coalgebra of ‘Step + Id’ modulo weak bisimilarity”

6See extensive work by Stefan Milius
13



Indexed Interaction Trees

ITree (X : I→ SET) := ν A.(i 7→ X i + A i + JGK A i)
return

silent step

play a move

Weak bisimilarity skips over any finite number of τ nodes
⇒ Mixed inductive-coinductive,

but not a problem for Coq-Coinduction! 14



Conclusion

Contributions

• Formalized generic soundness theorem for operational
game semantics.

• New datastructure: indexed interaction trees.

Ongoing & future work

• Clarify the categorical structure of “games” and
“half-games”.

• Fully formalized game semantics.

Thanks for listening!

15



Conclusion

Contributions

• Formalized generic soundness theorem for operational
game semantics.

• New datastructure: indexed interaction trees.

Ongoing & future work

• Clarify the categorical structure of “games” and
“half-games”.

• Fully formalized game semantics.

Thanks for listening!

15



Composition of dual strategies

16


	Motivations
	What are game rules?
	Tree constructions

