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Introduction Bisimulations and game techniques for higher-order languages have proved to
be powerful tools for reasoning about program equivalence and building models that scale to
advanced features such as side effects or existential types. Yet, their usage in mechanized proofs
is rare. In this work in progress, we argue that this observation is, in part, the consequence of
several mismatches between the traditional presentation of games in set theory and idiomatic
constructions from type theory. We hence present a formulation of games and strategies more
amenable to manipulation in proof assistants.

The framework we propose is structured around a coinductive representation of labelled
transition systems (LTS), inspired by interaction structures [?], by the Coq library of interaction
trees [XZH"20], and building upon the work of Levy and Staton [L.S14]. Our main contribution
is to provide a unified account of operational game semantics (OGS [Lai07, LLO7]), an LTS-
based game model for which we prove the correctness of the generated bisimulation with respect
to contextual equivalence'. The construction, and the proof, are parametrized by a rather loose
notion of evaluator assumed to satisfy a succinct axiomatization. In this talk, we will focus
on (1) introducing the standard approach of operational game semantics succinctly, before (2)
giving a more detailed account of the peculiarities and advantages of our representation of
games and strategies.

Operational Game Semantics The behavior of a program can be represented as the set of
its interactions with any execution environment. These sets of interactions can be generated
intensionally by an LTS, where the labels encode information exchanged. For higher-order lan-
guages, this interaction may typically be the application of the term at hand to an arbitrary
value v. One might be tempted to describe it as the transition Az.e 2PP(¥) e[z +v] but em-
barking higher order values in labels leads to challenging notions of bisimilarity. Following a
technique used in pointer-games [[1O00], operational game semantics provides a way to keep the
traces first-order: instead of full-blown terms, only an abstracted or inert version is exchanged,
with fresh channel names in place of subterms we wish to hide. The LTS of a term is constructed
by evaluating it to a normal form, say F[z v] in call-by-value, and issuing a label corresponding
to the shape of this normal form. Here the label app(z) is issued and will bind two fresh chan-
nels, one for the abstracted argument v provided to x and one for the abstracted continuation
E. This transition leads the LTS to a passive state where the environment (Opponent) is able
to resume computation by choosing an available channel.

Labels are now semantically simpler, but they bind and reference channel names. To tackle
this, we resort to a static scoping discipline and use dependent-types. Labels are indexed by
channel scoping information, containing types such as s — ¢ for functions and —s for continua-

LAt the time of writing the mechanized version of the proof is not complete.
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tions. The function next gives the new scope after a label has been issued (slightly simplified):
nextr : label I' — scope

nextr (appg, i) = s,t, T
nextr (rets i) == s,T

label : scope — Type
label I' :== app, , (s +t € ') | ret, (s € ')

The astute reader will have recognized that these label and scope transition rules already form
an LTS! We dub it the game specification. The OGS LTS proper is indexed over this specification
LTS. As our languages of interest have general recursion, we allow usage of the delay monad
D [Cap05]. We give the types of the configurations and active/passive transition functions:

conf-act : scope — Type trans-act : conf-act I' — D((m : label I') x conf-pas (nextr m))
conf-pas : scope — Type trans-pas : conf-pas I' — (m : label T') — conf-act (nextr m)

From Polynomial Functors to Two-Player Games OGS is a symmetric game but in
general, Proponent-chosen and Opponent-chosen labels might be different. Thus our two-
player game specifications consist of two matching half-game descriptions. Descriptions are
parametrized by a set of states for each player, each side giving for each state the set of allowed
moves, and for each move the next state. Each half-game gives rise to two functors on families
which we call the active and passive interpretation.

record half-game (I J : Type) := { move : I — Type; trans : Vi,move i — J }
record game (I J : Type) := { ply : half-game I J; opp : half-game J I}

active (H : half-game I J) (X : J — Type) i := (m : H.move i) x X (H.trans m)
passive (H : half-game I J) (X : J — Type) i := (m : H.move i) — X (H.trans m)

An indexed polynomial endofunctor [AGH"15] can be constructed by composing the active
resp. passive interpretation of Proponent resp. Opponent half-games. We can then build
strategies by taking an infinite tree construction on this endofunctor. As we wish to handle
looping in strategies, following the lead of interaction trees, our construction of choice is a free
complete Elgot monad [GMR16] which we give here in two mutually coinductive definitions.
The three cases in active strategies correspond respectively to leaves, silent steps similar to the
“later” node of the delay monad, and playing a move. Passive strategies correspond to waiting
for an Opponent move.

strat® (G : game [ J) X i :=ret (X i) |tau (strat™ G X i) | vis (active (G.ply) (strat™ G X) i)
strat™ (G : game I J) X j := passive (G.opp) (strat™ G X) j

Several dualities are at play. First, we can dualize a game by swapping the two components,
hence reversing the players’ roles. This dualization is definitionally involutive, an improve-
ment over [XZH 20, ?] where question-answer swapping is hard to make sense of. Second, on
half-games there is a functor-functor interaction law [[KRU20] between the passive and active
interpretations which we dub synchronization. Intuitively it makes a sender and a receiver
interact and progress. These two constructions together give rise to several more or less general
composition operators between strategies and counter-strategies, of which we give a simple one:

sync : X;(active H X ¢ x passive H Y 1) — X;(Xj x Y})
compo : ¥;(strat™ G X i x strat™ G+ Y i) — D(2;Xi + ;Y 5)
Moreover, like polynomial functors, half-games and games are closed under a number of

combinators, some studied in [LS14] and strikingly similar to linear logic connectives which we
have to investigate further.
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