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Abstract

We introduce a categorical framework for operational se-
mantics, in which we define substitution-closed bisimilar-
ity, an abstract analogue of the open extension of Abram-
sky’s applicative bisimilarity. We furthermore prove a con-
gruence theorem for substitution-closed bisimilarity, follow-
ing Howe’s method. We finally demonstrate that the frame-
work covers the call-by-name and call-by-value variants of
A-calculus in big-step style. As an intermediate result, we
generalise the standard framework of Fiore et al. for syntax
with variable binding to the skew-monoidal case.
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1 Introduction
1.1 Motivation

In research on programming language design and imple-
mentation, ideas are often presented on one, simple exam-
ple. E.g., abstract interpretation, separation logic, or gradual
typing were all presented on a single language, and later
adapted to other settings. Usually, the presented ideas are
thought of as widely applicable and their scope is clear to
the experts, but no attempt is made at delimiting it precisely
and formally. As a consequence, these ideas cannot be freely
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reused, even in slightly different contexts, they always have
to be adapted, and reproved.

We think the reason for this is that appropriate mathemat-
ical concepts are missing: there is no widely accepted notion
of programming language, so that we cannot state proper-
ties like “for all programming languages of such shape, the
following idea works”. Such a general notion should account
for both

(i) the interaction between syntax and dynamics, as in-
volved in, e.g., structural operational semantics [28],
or in statements or proofs of results like type sound-
ness, congruence of program equivalence, or compiler
correctness, and

(ii) denotational semantics, in the sense of including not
only operational, syntactic models but also others, typ-
ically ones in which program equivalence is coarser.

1.2 Context

In recent work [19], Hirschowitz proposed a new abstract

approach to operational semantics, and demonstrated its ex-
pressive power by proving abstract versions of classic re-
sults in process algebra, including for the first time an ab-
stract soundness result for bisimulation up to context in the

presence of variable binding. Bisimulation up to context is

an efficient technique [29] for proving program equivalences,
which had previously been proved correct at a similar level

of generality [6], but only without binding.

Briefly, in the new setting, a language equipped with a col-
lection of operational semantics rules is viewed as a monad
7 on a transition category &, typically a category of la-
belled graphs. The idea is that, on vertices, .7~ defines the
syntax of the considered language: for any X € %, the ver-
tices of 7 (X) are terms with free variables in vertices of X.
Similarly, transitions in .7 (X) are derivation trees follow-
ing the given rules, with axioms in transitions of X. So in
particular .7 (0) is precisely the syntactic transition system.

Now, properties like congruence of bisimilarity or sound-
ness of bisimulation up to context may be expressed in this
setting, and their proofs in [19] rely on two crucial proper-
ties of .7

e First, it is familial [7, 10], and even cellular in a sense
close to Garner and Hirschowitz [16]. Familiality yields
abstract analogues of syntactic notions like contexts
and partial derivation trees, and cellularity enforces
well-formedness conditions on the collection of pre-
mises of each transition rule, very roughly the fact
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that the premises of any transition f(xy, ..., x,) = x’
consist of transitions from x, ..., X,,.

e Furthermore, in order to prove, e.g., congruence of
bisimilarity for a free algebra .7 (X), the second prop-
erty that we need is that the monad multiplication
px: T3X) — J(X) is a functional bisimulation.
Let us call this compositionality of 7 at X.

1.3 Overview

In this paper, we extend the approach to higher-order lan-
guages, taking as a running example the call-by-name, big
step A-calculus, equipped with the so-called open extension
of Abramsky’s applicative bisimilarity [2], which we here
call substitution-closed bisimilarity.

Higher-order languages challenge the approach of [19]
notably because transition rules rely on proper substitution,
as opposed to mere renaming.

Indeed, if we follow one Fiore et al’s categorical frame-
work [11-13, 15, 17] for syntax with substitution in the pres-
ence of variable binding, the monad .7~ we obtain is not
familial. Informally, in order to model substitution, .7 fea-
tures a form of explicit substitution [1], which turns out to
be too flexible for familiality to work. Let us explain this
in a bit more detail. In the case of pure A-calculus, the set
of terms is viewed as indexed over (finite) sets of free vari-
ables, and natively equipped with renaming operations. Le.,
for any map f: m — n between finite ordinals, we get a
map X(f): X(m) — X(n) from terms with m free vari-
ables to terms with n free variables. Substitution is mod-
elled as a map X ® X — X, where elements of (X ® X)(m)
are ‘explicit’ substitutions e(ey, ..., e,)), with e € X(n) and
e1, -, €, € X(m). The problem is that such explicit substitu-
tions are standardly considered equivalent modulo simple
relations, e.g.,

(X(swap)(e)) (e, e2) = e(ez, 1),

where swap: 2 — 2 swaps the two given elements.

It is precisely because of this quotienting that the obtained
monad is not familial. In order to restore familiality and thus
be able to follow the approach of [19], we switch to a more
rigid notion of explicit substitution, which in fact forces us
to change both the ambient category in examples and the
general structure. The standard category for untyped calculi
is the functor category [Setf, Set] of covariant presheaves
on a skeleton of finite sets, with its standard monoidal struc-
ture. We now need to switch to mere IN-indexed families
of sets, on which the relevant tensor product only yields
skew-monoidal structure [4, 32]. Skew-monoidal structure
is a weakening of plain monoidal structure, in which struc-
tural associativity and unitality isomorphisms may not be
invertible.

As a final twist on this, syntax is standardly specified
by a so-called pointed-strong endofunctor on the considered
monoidal category, typically [Setf, Set], but the analogous
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endofunctor on [IN, Set] is not pointed strong. We thus need
to resort to a weaker notion which we call structurally strong.

In summary, and this is our first contribution, we gen-
eralise the standard framework of pointed strong endofunc-
tors on a monoidal category, to what we call structurally
strong endofunctors X on a skew-monoidal category. We
characterise the syntax as the initial X-monoid, i.e., Xy-al-
gebra with the syntax as the initial Xy-monoid, i.e., X.o-alge-
bra with compatible monoid structure (Theorem 2.15), a char-
acterisation we mechanically verify in Coq (see supplemen-
tary material), relying on the UniMath library [34]. Finally,
we prove that the obtained monad .7 is familial, along with
the fact that the natural transformation Xy — 7 preserves
familiality, in a suitable sense (Theorem 2.19).

We thus obtain a framework for syntax with substitution
in the presence of variable binding which lends itself to the
familial/cellular approach of [19]. The next step is to model
the dynamics. We first introduce transition Y,-monoids,
which are intuitively transition systems whose vertices are
equipped with Xj-monoid structure. Then, adapting ideas
from Fiore [15] and Ahrens et al. [3, 18] to the cellular ap-
proach, we consider transition rules specified by a syntac-
tically free endofunctor £ on transition Xj-monoids, mod-
els being given by a special kind of algebras, called vertical.
Under finitarity hypotheses, as our second contribution,
we characterise the syntactic transition system as the initial
vertical algebra (Theorem 4.20).

Finally, we define substitution-closed bisimilarity, which
in examples instantiates to the open extension of applica-
tive bisimilarity. Our goal is thus to prove that substitution-
closed bisimilarity is a congruence. However, we meet a last
significant difficulty, namely that because of explicit substi-
tution, compositionality fails. In fact, a slightly weaker prop-
erty holds, essentially compositionality w.r.t. operations
from X (as opposed to explicit substitution). As a third and
final contribution, under an additional cellularity hypoth-
esis for X1, we follow Howe’s construction prove abstractly
that substitution-closed bisimilarity is a congruence (Theo-
rem 5.19). We show that the result applies to call-by-value
and call-by-name variants of big-step, pure A-calculus.

Altogether, under suitable hypotheses, our contributions
provide a systematic construction, from the basic Xy and X1,
of a syntactic transition system whose substitution-closed
bisimilarity is a congruence.

1.4 Related work

The main framework meeting the above criteria (i) and (ii) is
bialgebraic semantics [33], including a few variants [9, 31].
As far as we know, these approaches do not cover higher-
order languages like the A-calculus, which was one of the
motivations for our work. Among more recent work, quite
some inspiration was drawn from Ahrens et al. [3, 18], no-
tably in the use of vertical algebras. However, a difference is
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that we do not insist that transitions be stable under substi-
tution. Links with other relevant work, e.g., Bodin et al. [5],
though desirable, remain unclear, perhaps because of the
very different methods used. Furthermore, the cellularity
used here is close to but different from the Ty -familiality
of [19]. It would be instructive to better understand poten-
tial links between the two. Finally, in unpublished work,
Fiore and Saville have considered the skew-monoidal case
as a technical, intermediate setting tool [14]. Our proof of
Theorem 2.15 is inspired by their notes.

1.5 Plan

We start in §2 by recalling Fiore et al’s standard framework
for syntax with binding and then familiality, explaining our
move to the skew-monoidal setting, and proving our initial-
ity and familiality results. We then continue in §3 with a
reminder and a reformulation of standard applicative bisim-
ulation, which then guides the design of our abstract frame-
work in §4, where we prove our initiality result for verti-
cal algebras. Finally, in §5, after briefly recalling Howe’s
method, we present the abstract Howe theorem and its proof,
and devote §6 to a conclusion and some perspectives.

1.6 Notation

The category of (contravariant) presheaves on a category C
is denoted by C, the Yoneda embedding by y, and [A, B] is
shorthand for the hom-set, or hom-category depending on
the context, of morphisms A — B.

2 Syntax: familiality and substitution

In this section, we explain Fiore et al’s approach to specify-
ing syntax with variable binding, on the particular case of
pure A-calculus. We then show that the obtained monad is
not familial, hence move to a non-standard base category.
This requires us to prove our generalised initiality result, to-
gether with familiality of the obtained monad.

2.1 The standard setting

The first step is to recall Fiore et al’s standard theory. The
relevant category for this, say &), is the functor category
[Set/, Set] from finite sets to sets (let us in fact assume
that Setf is a small category equivalent to finite sets, e.g.,
finite ordinals with arbitrary maps between them), or in
other words the presheaf category (E\O, where Cy = Set;p .
An object X is thus in particular a Sety-indexed family of
sets, and we think of X(m) as the set of states with sup-
port m. If X consists of terms, then X(m) is typically the
set of terms with free variables in m. The action of X on
morphisms f: m — n accounts for variable renaming: we
think of X(f): X (m) — X(n) as renaming the free variables
of terms in X (1) according to f.

The basic ingredient for presenting our monad is the ‘sub-
stitution” monoidal structure on %: the unit I is the presheaf
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of variables, defined by I(m) = m, and elements of (X ®
Y))(m) are pairs of some x € X(n) and a substitutiono: n —
Y (m), modulo the relation

(0,f-x)~(o°f,x), @

foranymap f: n’ — nandx’ € X(n’), where f -x’ denotes
X(f)(x’). We denote by x(jo) the equivalence class of (0, x).

A monoid is then an object X € % equipped with mor-
phismse: I — X and m: X ® X — X, satisfying standard
associativity and unitality axioms.

Fiore et al’s theory then tells us that A-calculus syntax
is the free Zé\-monoid, i.e., the free monoid equipped with
a compatible algebra structure for the pointed strong endo-
functor

LX) (m) = X(m)? + X(m + 1). (2)

An algebra for this endofunctor ©4': %, — % is a pre-
sheaf X equipped with application and A-abstraction

(=1 =) X(m)*> = X(m) and A,,: X(m +1) — X(m),
and the pointed strength specifies how standard, capture-

avoiding substitution should commute with both operations.
Indeed, a pointed strength is a natural transformation

TMX) Y -5 ZMX®Y),

where Y ranges over pointed objects, i.e., objects in the coslice
I/Z under the monoidal unit I.

Example 2.1. The component of the pointed strength of
L4 at X and Y maps any pair in,(e)(o)) € (Z5(X) ® Y)(m)
with e € X(n + 1) (so in,(e) € 2§ (X)(n)) and oz n — Y(m),
to in,(e(oT)), where o7 denotes the composite

a+in, Y (ing) em+1

1412 Y (m) + (m+ 1) L Ym+1) )

where e: I — Y is the point of Y - recalling that I(m +1) =
m+1 by definition. So, the pointed strength specifies that the
given renaming o commutes with A-abstraction, preserving
the fresh variable.

By work of Fiore [15], the forgetful functor Zé\ -mon —
& from Zé\—monoids is monadic, and the induced monad
,/‘70/\ on %, involves both operations, plus explicit substitu-
tion. It may be presented as a term language in which all
explicit substitutions are pushed down towards the leaves,
as in the grammar

TEX)n)se:=ile e, | Ae | o(er, - ep),

wherei € n,0 € X(m) for some m, e, ey, ..., e, € T ¢M(X)(n),
ande’ € 7MX)(n +1).

Terminology 2.2. There are injections n < 7 (X)(n)
and X(n) < <70A(X )(1), which are both close in spirit to in-
jections of variables into terms. In order to distinguish them,
we think of the former as an injection of variables, and of
the latter as an injection of constants.
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2.2 Failure of familiality

As announced in the introduction, the characterisation of
syntax with variable binding through X;-monoids is prob-
lematic for us because the obtained monad .7* is not fa-
milial, as we now explain. Let us first start by briefly recall-
ing familiality [7, 10, 35, 36]. One way to understand it is as
providing an abstract counterpart to multi-hole contexts, or
linear terms, in the following sense.

Example 2.3. Consider the ‘free monoid’ monad M on Set,
which maps any set X to the set }; X" of finite sequences of
elements. Any sequence in M(X), say (xq, ..., X,,), viewed as
amap 1 — M(X), decomposes as the corresponding linear
sequence (1, ..., n) over {1, ..., n}, and the renaming mapping
any i to x;. Equivalently, using n as shorthand for {1, ..., n},

. (1,...m) Mlx;l; .
it factors as 1 —— M(n) —— M(X). In fact, linear

sequences enjoy the following ‘genericness’ property.

Definition 2.4. Given any functor F: &/ — %, a mor-
phism &: B — F(A) is F-generic (or generic for short) when-
ever any square of the form below (solid) admits a unique
lifting k (dashed) such that F(k) o £ = y and gok = f.

B—2* L FO)

F -7 JF@

F(A) W F(D)

F is familial iff any morphism f : B — F(X) admits a generic

9
<

F(h
factorisation, i.e., factors as B i F(A) L> F(X) with &
generic. Any morphism of the form F(h) is deemed free.

We have the following important alternative character-
isations in the case of presheaf categories, recalling from
Paré [26] that a functor preserves connected limits iff it pre-
serves wide pullbacks.

Theorem 2.5 (Weber [35, Theorem 8.1]). For any accessible
endofunctor F on any presheaf category C, the following are
equivalent:
(i) F is familial;
(ii) F preserves wide pullbacks;
(iii) there is a functor E: el(F(1)) — C such that

FX)©) = Y, CE@E),X),
xeF(1)(c)

naturally in X and c.

Recall from MacLane and Moerdijk [25] that the category
of elements el(X) of a presheaf X over any category C has
pairs (c,x) with x € X(c) as objects, and as morphisms
(c,x) = (¢’,x’) allmorphisms f : ¢ — ¢’ such that X(f )(x’) =
X.

Proposition 2.6. The functor Zé\ is familial, but the monad

T is not.

Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont

Proof sketch. Familiality of Z{)X is easy by the theorem, since
we have 28 (X)(n) = [y, + Y, X1+ [Ypa1, X1

For non-familiality of .7, the proof is not particularly
illuminating, but here is a hopefully helpful intuitive argu-
ment.

For any closed term ¢, viewed by action of 0 — y; as anel-
ement of %A (y1)(0), a natural candidate generic is the term
idy (e), viewed by Yoneda as a morphism y; — 7{(y1),
where we think of id; as a unary constant, to which we feed
e as argument by explicit substitution.

Let us show that it is in fact not generic. Indeed, under the
action of y;: y; — yy, id; is mapped to !: 0 — 1 viewed as
an element of y(1) = Set(0, 1), so by (1) id; (e is mapped
by 73 (y)) to

He) = idy(ee!) = idy ().
Of course, this would hold for any closed ¢’ # e, so that we
get a commuting square

idy (e’
yo — D, T y1)
i 6)| |78
FA A
0 (y1) gyl (¥o)

with no filler. In fact, because there are infinitely many dis-
tinct closed terms, we get infinitely many factorisations of
the diagonal idy (), for which no candidate generic can pro-
vide enough fillers. O

2.3 Familial syntax

So the standard monad for A-calculus syntax is not familial,
which prevents us from applying the methods of [19]. From
the proof of Proposition 2.6, clearly, the problem comes from
quotienting by (1), so we move to the more rigid category
%o = [N, Set] of N-indexed families. A first difficulty is
that it does not fit Fiore et al’s general framework. Indeed,
the natural tensor product on [IN, Set], defined by

(A®B)(n) = Y} A(m) x B(n)",

is only associative and unital up to non-invertible arrows,
which makes %, a skew-monoidal category.

Notation 2.7. An element of (A ® B)(n) is a triple (1, a, 5)
with a € A(m) and f: m — B(n). Leaving m implicit and
thinking of the triple as an explicit substitution, we denote
it again by a(g).

Example 2.8. Associativity fails because elements of (A ®
B) ® C have the form (a(by, ..., b)) (o)), while those of A ®
(B ® C) have the form a(by (o), -, b, (0,)): we can map
the former to the latter by pushing ¢ into the substitution
(b1, ..., b)), but not conversely, because o7, ..., and 0, may
not all be the same. In [Set¢, Set], a(by (1), .., by, (0,))) may
be given the desired form thanks to (1), by forming the com-
pound substitution [0, ..., 0] p1 + ... + Py = C(n).



A Cellular Howe Theorem

So we should generalise Fiore et al’s theory to skew-mo-
noidal categories. But in fact, moving to the category %
generates a second difficulty, namely that pointed strong
endofunctors become inadequate. Indeed, e.g., the pointed
strength Z8(X) ® Y — Zg(X ® Y) of ¢ on [Sety, Set]
relies both on variables and renaming in Y (as shown by the
presence of e,,,,1 and Y (in;) in the definition (3) of 61). So the
notion of strength we need for endofunctors on % should
assume that Y comes equipped with variables and renaming,.
Variables are given by a point as before, while renaming is
taken care of by I-module structure, in the following sense.

Definition 2.9. In any skew-monoidal category %, for any
monoid X, the category X -mod of (right) X-modules has
as objects all M € & equipped with an action7: M® X —
M, satistying two standard coherence conditions. A module
morphism is a morphism commuting with action.

As desired, an action Y ® I — Y yields for all n a map
(Y®I)(n) = ¥, Y(m)Xn™ — Y(n) giving the action of
morphisms m — # on Y (m). The unit [ is canonically an [-
module, and a point for an I-module Y is a morphism [ —
Y in I -mod. Thus, the appropriate category for Y is the
following coslice category.

Definition 2.10. Let the category I -mod; of pointed I-mo-
dules be the coslice I/I -mod.

Let us now define the appropriate notion of strength, sim-
ilarly to [22] (generalising [15,1.1.2]). We first equip I -mod;
with skew-monoidal structure. Following [21, (8.1)], tensor
product of (pointed) I-modules is given by the following co-
equaliser in &, where ry : X®I — X is the [-module struc-
ture on X.

X®heY TIX®Y S XrY (4

rx®Y

By [21, Theorem 8.1], I -mod is a skew-monoidal category
(with invertible right unit), and the forgetful functor is mo-
noidal and creates monoids. In fact, this extends to [ -mod;,
and we define:

Definition 2.11. A structural strengthonafunctor F: " —
& is a natural transformation st with components

stay: F(A)®Y — F(AQY)

where Y € [ -mod;, A = (X4, ..., X,,),and A® Y = (X; ®
Y, .., X, ®Y), making the following diagrams commute.
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F(A)
PF(A) F(pa)
F(A)®I — F(A®T)
FA XY X FAeX) o Y Y FA® X ® Y)
QR X, Y J{F @axy)
F(A)® (X ®Y) e F(A® (X ®Y))

where &y p - is (A®K) o aa p

Example 2.12. The endofunctor Zéxt N — N for the syn-
tax of pure A-calculus is defined by the same formula (2) as
before. Let us now construct its structural strength. For any
pointed I-module (Y,e: I — Y,r: Y ® — Y) and map
fim—mn,themap?,: ¥ Y(m)Xn™ — Y(n) specialises
to Y(f) :=7,(—, f): Y(m) = Y(n). We may thus define the
desired structural strength by

styat (ZEX)®Y)) — IHX®Y)(n)
(lnl(%z))qvl) = {”l(yqu/quD)
(i ())(v) > in(x(T))
where we assume v: m — Y(n),x € X(m+1),and vT: m +
1—->Yn+1)isasin(3).
Observing that any monoid is in particular a pointed I-
module, we may define F-monoids in the new setting.

Definition 2.13. For any structurally strong endofunctor
F, an F-monoid is an object X equipped with F-algebra and

monoid structuresa: F(X) — X and ] Sx & X®X, such
that the following diagram commutes.

FX)® X XX, (X @ X) —"_, F(X)

x| I

X®X X

m

Proposition 2.14. For any structurally strong endofunctor
F, F-monoids form a category F -mon, whose morphisms are
morphisms of underlying objects that respect both the monoid
and algebra structure.

Our first main result is:

Theorem 2.15. For any finitary, structurally strong endofunc-
tor F on a cocomplete skew-monoidal category &, if the tensor
preserves colimits on the left and directed colimits on the right,
then the forgetful functor %" : F -mon — & is monadic, and
the free F-monoid on any X € % has carrier uA.(I + F(A) +
X ® A), i.e., the colimit of the chain

3% o
F%(0) = FL(0) — ... > F(0) = F(0) — ...,
where

o Fy: % — & mapsany Atol + F(A) + X ® A;
o [0 =Id and L™ = Lo L", for any endofunctor L on
any category;
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. 8())(: 0= F%(O) — F%(0) is the unique such map;
e I%L: Fx(F1(0)) — Fx(F%(0)) denotes Fx(9%).

Notation 2.16. Let F® denote the ‘free F-monoid’ monad.
We sometimes abbreviate F®(X) as X® when F is clear.

Let us now prove that F® is familial as desired, and fur-
thermore that the unit 77y : F — F® preserves familiality, in
the sense of preserving generics. In order to establish this,
we rely on:

Proposition 2.17 ([35, Proposition 5.10(2)]). Any cartesian
natural transformation, i.e., one whose naturality squares are
pullbacks, preserves generic morphisms.

So we want to show that nr is cartesian. This will rely on
properties of %, that we first show are satisfied by IN.

Example 2.18. As a presheaf category, IN is of course ex-
tensive [8]. Furthermore, each py: X — X ® I is obviously
monic, and p will be cartesian if each square of the form

X () 20 5 X (1) x
| [
4> m
1 w—(n,id,;) Zm n
is a pullback. But if (3 ! x n™)(x(f)) = (n,id,) for some
x(f), then (m, f) = (n,id,), so x is the desired unique ele-
ment of X(n) with specified projections.

Tensor product moreover preserves wide pullbacks, hence
is familial, on both sides. On the left, this holds because co-
products commute with connected limits in presheaf cat-
egories in general, hence wide pullbacks. On the right, it
holds for the same reason, plus the fact that each functor
X — X" in Set also preserves wide pullbacks.

Abstracting over this situation, we obtain:

Theorem 2.19. In the situation of Theorem 2.15, if

e 7 is extensive,
e p is cartesian and monic, and
o ® and F are familial,

then F® is familial and the natural transformation ng: F —
F® is monic and cartesian.

3 Evaluation and applicative bisimulation

In the previous section, we have amended Fiore et al’s stan-
dard framework to make it compatible with the familial ap-
proach to operational semantics. The next step is to deal
with transitions. For this, we start in this section by analysing
standard, syntactic applicative bisimulation. Guided by our
findings, we will design our abstract setting in the next sec-
tion.
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3.1 Substitution-closed bisimulation
Standardly, evaluation is inductively defined by the rules
e; | Ax.ef eilx—e] e
Ax.e | Ax.e e1e ) es

and applicative bisimilarity is introduced in two stages. First,
one defines applicative bisimulation on closed terms.

Definition 3.1. A relation R over closed A-terms is an ap-
plicative bisimulation iff e; R e; and e; || Ax.ej entails the
existence of e; such that e, || Ax.ej and, for all terms e,
ej[x — e] R &[x — e], and symmetrically.

Applicative bisimulations are closed under unions, and so
there is a largest applicative bisimulation called applicative
bisimilarity and denoted by ~. Then comes the second stage:

Definition 3.2. The open extension of a relation R on closed
terms is the relation R° on potentially open terms such that
e R° ¢ iff for all closed substitutions ¢ covering all involved
free variables we have e[o] R ¢’[o].

Lemma 3.3. The open extension of any relation R is equiva-
lently the greatest relation R’ on potentially open terms such
that ife R’ €, then for all closed substitutions o covering all
involved free variables we have e[c] R ¢’[o].

Proof. By definition, RO satisfies the condition. To see that
it is the greatest such relation, consider any R’ satisfying it:
for alle R’ ¢’, we have e[c] R €’[o] for all closing o, hence
e RO ¢’ by definition; thus R’ C RO as desired. m]

The result we wish to prove in the abstract setting is:

Theorem 3.4 (See [27] for a historical account). The open
extension ~° of applicative bisimilarity is a congruence, i.e., it
is an equivalence relation, and furthermore

e ¢ ~° e, entails Ax.ey ~° Ax.ep for all x;

e ¢ ~° ey ande] ~° €, entaile e] ~° e €).

We take a slightly different viewpoint here, starting from
the following observation.

Lemma 3.5. The open extension of applicative bisimilarity is
equivalently the greatest substitution-closed opening bisimu-
lation, i.e., the greatest relation R on potentially open terms
such that
® ¢1 R, entailsej[x — e] R e;[x +— e] for anye;
e ifey and e, are closed, e; R ey, and ey —* Ax.e| then
ey =* Ax.ey withe] R ey, and symmetrically.

Proof. The relation ~° is straightforwardly a substitution-
closed opening bisimulation. But any substitution-closed
opening bisimulation R restricts to an applicative bisimula-
tion on closed terms, which is thus included in ~. On open
terms, if e R ey, then for all closing substitutions o we
have by substitution-closure of R that e;[c] R e,[c], hence
e1[o] ~ e;[0] and so e; ~° e, by definition. O
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When designing our abstract framework, we should thus
be able to model two things: opening bisimulation and subs-
titution-closed relations. _

The latter is easy, remembering that tensor product on IN
is a sort of explicit substitution. Indeed, substitution-closed
relations on any object X are relations in the category of
X-modules (in the sense of Definition 2.9), i.e., objects R
equipped with a map R® X — R over X?.

For modelling opening bisimulation, we should extend N,
which is only good at modelling the syntax of A-calculus: in
order to also model transitions, let us consider the following
category.

Definition 3.6. Let C denote the free category on the graph
with a vertex n for alln € IN, plus a vertex |}, with only edges

05 &1 Let# =C.

Objects X € E are IN-indexed families, together with a
set X (|}) of transitions, the source and target of any r € X(|})
are given by X(s): X(J) = X(0) and X(#): X(ll) — X(1).

The full embedding i: IN — C induces by restriction and
left Kan extension a coreflection

A/—\)A
IN C

(where .# stands for ‘monter’, get up in French, and & for

‘descendre’, get down).

Because targets of transitions in any X € C are in X (1),
we may define the transition system for big-step A-calculus
so as to make opening bisimulation the natural notion of
bisimulation: we take it to be the presheaf X on C, with X ()
the set of evaluation proofs r: e || Ax.e/, in the standard
sense, X(s)(r) = e € X(0), and X(t)(r) = ¢ € X(1). This
way, any term evaluates to the body of its value, which, com-
bined with substitution-closedness, achieves the desired ef-
fect. We thus consider the modified evaluation rules

e1 e eilex] U es
e1e les

Aele ©)
where €],e3 € X(1) and ej[e,] denotes standard capture-
avoiding substitution of the unique free variable of e].

Following the open maps approach to bisimulation [19,
20], functional opening bisimulations may be defined as ar-
rows f : R — X such that for all commuting squares as the
solid part of

0— 3R

T ©)

12 x

there is a filling k as shown (dashed), making both triangles
commute. Opening bisimulations are then relations R <
X2 whose projections are functional opening bisimulations.
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Proposition 3.7. Substitution-closed bisimulations, or X-
bisimulations, i.e., bisimulations of X -modules, are closed un-
der unions and hence admit a greatest element, called X-bisi-
milarity, or substitution-closed bisimilarity.

With this definition, we have:

Proposition 3.8. Substitution-closed bisimilarity is precisely
the open extension of applicative bisimilarity.

3.2 Vertical algebras

Naively, following [19], the next step should be to describe
the syntax and evaluation rules of big-step A-calculus as the
initial algebra for some monad .7~ on C. The idea is that
I (A)(n) should consist of terms with 7 free variables and
constants in all A(m)’s, while .7 (A)(}) should consist of
transition proofs with constants in A(|}) (remembering Ter-
minology 2.2). As explained in §1, the problem lies in the
p-rule (modified or not), whose premises use substitution.
In order for the monad .7 to make sense, this requires the
argument A to feature some notion of term substitution. In
other situations, one could even imagine requiring A to be
a model of the syntax. We will thus define .7~ as a monad
on the pullback category

Zé\ -Mon —Z~ Z{)\ -mon
o

l?/o (7)
C — N,

whose objects we call transition Zé‘-monoids, are presheaves

A on C, equipped with Z{*-monoid structure on the under-
lying presheaf &Z(A) on IN.
Let us define .7 through a generating endofunctor: given

any Zé\-monoid A€ E we let
ZiMA) () EM(Z(A)(n) (®)
AW = AQ) +arf(A), )
for all n € IN, where
e (Z{")® is as in Notation 2.16,
e A(1) accounts for Rule (5, right), and
e arP(A) accounts for Rule (5, left): it denotes the set of
triples (11, €5, 72) € A(J)}XA(0)xA(ll), such thatry-s =
(1 - D)ey] (where ‘- is as in (1) but for contravariant
presheaves, e.g., 15 - s = A(s)(r2)).

The source and target maps are defined as expected. E.g., any
(r1,€p, 1) withry: eg |l € and ry: €f[e;] | e3 has source and
target e1 () e () and e3(1)), respectively.

Remark 3.9. Substitution ¢é][e,] follows from the monoid
structure of A. We should also prove that Z{\(A) is a tran-
sition Zé‘-monoid, which holds because (Zé‘)@(g (A))is a
Zé\—monoid by construction. In fact, we have &7 (Z{(A)) =
Fo(D'(A)), where 7 is the comonad induced by the ad-
junction # 4 %,
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We have thus organised the operational rules into an end-
ofunctor on transition Zé\—monoids. However, we do not yet
have any monad, or, worse, any notion of model. Indeed,
any Z{\-algebra A has two underlying algebra structures
for the endofunctor (Z{')®: one from the L /*-algebra struc-
ture of &’ (A), and the other from the fact that Z{\ coincides
with (Zé\)® on the syntactic level.

But in fact, we may construct the following modified vari-
ant ©{* of 24 by setting

EMA)m = A(m)  and  ENAU) = ZHAYD),
with source and target maps given by composition with the
(Zé\)®—algebra structure of A. The relevant models are just
Y. A algebras whose structure map is sent to the identity by
the forgetful functor L} -Mon — X/'-mon. Following
Ahrens et al. [3, 18], we deem such algebras vertical.

As we will prove below (Theorem 4.20), free vertical alge-
bras may be characterised inductively, which in the present
case means that the free vertical algebra over any transition
Z{)\—monoid is inductively defined by the modified rules (5),
augmented with an axiom

0o inA
= . (10)
o) 4o’ (1)

Lifting the adjunction of Theorem 2.15 from (E\O to E, we
obtain a chain of monadic adjunctions
E 1 26\ -Mon 1 i{\-algv,

\/

where i{x—algv is the category of vertical i{‘—algebras.

We at last arrive at a setting in which to study the ques-
tion we started with, in its new guise: is substitution-closed
bisimilarity a congruence in the initial vertical algebra?

However, there is a last issue that prevents us from di-
rectly applying the techniques of [19]: calling .7 the ob-
tained monad over & = E, compositionality fails, i.e., the
multiplication u for 7 is not a functional bisimulation.

Example 3.10. The problem is essentially as follows. Monad
multiplication takes a term of terms (i.e., constants are terms),
and performs the substitution: typically, for any such terms
of terms Eq, ..., E,;, we have

/J(e(]El, s EmD) = e[fu(El)/ s M(Em)],

i, e where each variable j € m is replaced with u(E)). E.g.,
over m = 2 = {x,y}, the term of terms (x y)(Az.z, Az.z)
is mapped to the closed redex e = (Az.z) (Az.z). Since we
have e || z, compositionality would require the existence of
a transition (x y)(Az.z,Az.z) | E’, for some E’. However,
the only transition rule whose conclusion has as source a
term of the form o(...) is (10), in which o is nullary, so it
cannot apply here.
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Although we cannot hope free vertical algebras to be com-
positional, we in fact only need a restricted form of composi-
tionality, demanding that for any commuting square as the
solid part below,

0 —— ZA) —— Z{(4)

l //_k/, l (11)

== A

there exists a lifting k as shown. In this case, we call A a
weakly compositional algebra.

Remark 3.11. The endofunctor L} really acts on &, not
&, so some implicit casting is going on: the whole diagram
takes place in &, so Z{\(A) and A should be considered
as shorthand for their images through the forgetful functor
8 Z{)\ -Mon — %, while Zé\(A) is in fact shorthand for
M (EHND X (A))).

Intuitively, by Yoneda, weak compositionality says that
for any transition » € A(|}) whose source is obtained by
evaluating a term e of depth 1, r is obtained by evaluating a
transition term R € Z{\(A)(ll), whose source is e, all as in

e——— [lella
R : l? =[R]A

~

e — X,

where [-]4: Z{(A) — A denotes the algebra structure. In
other terms, [-] 4 has the functional bisimulation property
restricted to terms of depth 1 without explicit substitution.

4 An abstract setting for Howe’s method

We are now ready for abstracting over big-step A-calculus.

4.1 Howe contexts

We start by axiomatising the ambient setting for transition
systems, notably their layered nature. Let us recall that any
fully faithful functor F: C — ID induces a full coreflection

where Y. and Ar respectively denote left Kan extension
and restriction along F°P. By the triangle identities, Ar(ex)
and €y, (c) are isomorphisms for all X € DandC e C.

Furthermore, let 2 denote the poset {0 < 1} viewed as a
category.

Definition 4.1. A Howe context consists of a small category

C together with a functor p: C — 2, equipped with skew-

monoidal structure on the presheaf category é\o, where C,

denotes the fibre of p over 0, satisfying

(H1) each functor — ® C is familial and preserves colimits,

(H2) each functor C ® — is familial and preserves filtered
colimits, and
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(H3) denoting by i: Cy <= C the canonical embedding, the
counit &1 Y, Aj(L) — L is a copairing [s,t]: P +
Q— LwithP,Q e Cy,forallL € C\ C,.

In particular, each A;[s, t] is an isomorphism, so any mor-
phism from some R € C; to L factors uniquely through
either s or t.

Notation 4.2. We respectively call objects of C, Cy, and
C\ C, basic objects, state types, and transition types, and let
Go = EB, % = E, M =3, and I = A;. We often omit .7
and & for readability.

Let us note that .#Z extends a presheaf X € ([/:E by map-
ping any transition type to the empty set.

Example 4.3. For pure A-calculus, ¢ is the copairing 0 +

1 ﬂ)ﬂ (or rather its image under the Yoneda embedding).
We have already explained familiality in Example 2.18. Re-
garding colimits, for — ® X, the considered colimits should
merely commute with coproducts, hence — ® X commutes
with all colimits. For X ® —, the considered colimits should
commute with coproducts and finite products in sets, so the
best we can say in general is that X ® — commutes with
sifted colimits, hence in particular with filtered colimits.

Let us conclude this section with two crucial properties.

Lemma 4.4. The functor &1 &€ — %, is a bifibration, for
which opcartesian liftings are isos at transitions types.

Proof. The opcartesian lifting f - X of any given X € &
along f: Z(X) — C is given by taking (f - X)(P) = C(P)
forall P € Cj and, (f - X)(L) = X(L) for all transition types
L « P+ Q: [s,t], with (f - X)(s) and (f - X)(t) given by
composition, e.g., X(L) — X(P) — C(P).

The cartesian lifting X - f of any X € & along f: C —
Z(X) is given by taking (X - f)(P) = C(P) for all P € C,
and, for all transition types P+ Q — L, (X - f)(L) to be the
pullback

X-Hl) ——— X(L)

l<X<s>,X(t)>
C(P)XC(Q)WX(P)XX(Q) o

Corollary 4.5. Any morphismin€ factors as avertical mor-
phism | (= such that Z(I) = id), followed by a cartesian one.

4.2 Substitution-closed bisimulation

With the setting of Howe contexts in place, we now abstract
over substitution-closed bisimulations.

Plain, functional bisimulations are defined by lifting against
all maps s from distinguished copairings [s, t], e.g., as in (6).
Similarly, bisimulation relations are defined as relations whose
projections are functional bisimulations.
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Now, substitution-closed bisimulations should live in a
category of transition systems whose underlying object in
@ is substitution-closed. As we will use this idea of transi-
tion systems with structured underlying object several times,
let us factor out the construction:

Lemma 4.6. For any monadic functor Uy: & — &, con-

sider the pullback (&) _2¢ &

If the monad induced by Uy is accessible, then & | & has a
fully-faithful left adjoint and &*(Uy) has a left adjoint.

Terminology 4.7. If objects of & are called a certain name,
say, things, then objects of Z*(&") will often be called tran-
sition things.

Definition 4.8. Let transition monoids be the objects of
Mon(%) = Z*(mon(%)), where mon(%) is the category
of monoids in &,.

Furthermore, let the category of transition X -modules be
X -Mod = Z*(Z(X)-mod), for any X € Mon(%).

We let 7 : Z(X)-mod — % denote the forgetful func-
tor,and ¥’ = *(¥): X-Mod — 7.

So transition X-modules are objects M € & whose un-
derlying I (M) € & is a Z(X)-module.

Definition 4.9. For any transition monoid X, a functional
X-bisimulation is a map of transition X-modules whose im-
age under .7 ’ is a functional bisimulation. An X -bisimulation
is a relation of transition X-modules whose projections are
both functional X-bisimulations.

We are now interested in defining the largest X-bisimu-
lation. This requires the following few intermediate results,
leading to Corollary 4.12.

Proposition 4.10. The forgetful functor. 7’ : X -Mod — &
creates unions.

Lemma 4.11. X-bisimulations are closed under unions.

Proof. X-bisimulations are in particular plain bisimulations,
so any union, which is computed as in & by Proposition 4.10,
is again a bisimulation, as desired. m|

Corollary 4.12. For any X, the union ~% of all X -bisimula-
tions over X, called X-bisimilarity, is an X -bisimulation.

4.3 Signatures, models, and initiality

In this section, in order to specify syntax and transition rules
in the abstract setting, we introduce the notion of 2-signature
and its models. We furthermore show that under mild hy-
potheses any 2-signature admits free models.

Let us first incorporate syntax into the transition monoids
of Definition 4.8. For a general Howe context and structurally
strong endofunctor X, on &), we first define the category
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Yo-Mon = Z*(L,-mon) of transition Ly-monoids with
notation as below left.
Y9-Mon N Yy-Mon

gi L@' (12)

Yg-mon - Yy-mon
70

o U
Xy-Mo Z, Xy-mon

| L

gT%@

Notation 4.13. We often omit &’ and % for readability.

An endofunctor X on Xy-Mon will be called syntacti-
cally free iff the Xg-monoid structure of any 2’ (X(X)) is
precisely the free structure on Z(Z’ (X)), i.e., 7' (£1(X)) =
L0 (27(X))), where £ denotes the left adjoint to %),.
Otherwise said, letting %, denote the induced comonad -#{y
%, the diagram above right commutes.

Notation 4.14. Let .7y = %y ° £}, the induced monad.

Definition 4.15. A 2-signature on a Howe context C —
2 consists of a structurally strong, finitary endofunctor X
on %, preserving wide pullbacks, and a syntactically free
endofunctor Z; on transition Xj-monoids.

Remark 4.16. Any 2-signature induces a signature in the
sense of Hirschowitz et al. [18, §4.1].

Let us now define the category of models of a 2-signature,
by mimicking the concrete notion of vertical algebra from
§3.2. For this, we observe that passing from L{* to £ may
be done by opcartesian lifting in the sense of Lemma 4.4.
Indeed, bifibrations are stable under pullback, so &” is again
a bifibration, and we may state:

Deﬁnitior& 4.17. LetX;: Xy-Mon — X, -Mon be defined
by letting X1 (X) be a choice of oplifting of £1(X) along the
counit €2,y 2" (£1(X)) = Zo(Z" (X)) = 2" (X).

We obtain by construction:
Proposition 4.18. The triangle below commutes.
X1

Xy-Mon Yy-Mon

g’ o’
Yy-mon

Definition 4.19. Let the category X4 -alg  be the full sub-
category of X1 -alg on vertical ¥.1-algebras, i.e., ones whose
structure maps Y.1(X) — X are sent by & to identities.

The functor Y. restricts to an endofunctor (il)p( on the
fibre over any Xy-monoid X, and we call £, vertically fini-
tary iff each such restriction ()21)|X is finitary.

Theorem 4.20. If Y, is vertically finitary, then vertical X1 -
algebras are monadic over transition ¥y-monoids, and the free
vertical ¥.1 -algebra over any given X is yA.(X+()i1)|g/(X)(A)),
i.e., colimm,e, X, withXo = X and X,.11 = X+(Z1)197(x)(X0)-
In particular, the initial vertical ¥, -algebra is the colimit (in
the fibre) of the chain 0° — (£1)0(0°) = (£1)70(0°) — ...,
where 0% denotes the initial ©y-monoid.
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4.4 Weak compositionality

We conclude this section by showing weak compositionality
of the initial vertical algebra, say Z = /JA.(il)w@ (A), under
a suitable hypothesis. The only thing we will need to know is
that the source term of a transition in X1 (X) has depth one.
In order to state this properly, let us observe that by (12) we
have YUY, = T, %, so by universal property of counit,
as I(M (P)) = P, for any transition r: L — 7Z/(£1(X)), the

source 7 o s admits a unique lifting 7 \ s as shown below.

p s L
r\s\i{ r
A TALDH X)) = A DX XN 753 % (X))

Definition 4.21. The 2-signature (X, X1) is layered iff for
any r: L = Z/(Z1(X)), r \ s lifts through .# (15, 7 (x))>
A Zo(Z(Z (X))

-7 l‘/// (1z9,02(x))

as in

p ﬁ MNTAD X (X)))).

Informally, this means that the source of the conclusion of
a transition rule must be an operation applied to some “me-
tavariables”: given any transition r € X1(X)(L), there exists
m € Lo(X)(P) such that r - s = n(m), with : L9 = 7.

Remark 4.22. As 1) is monic by Theorem 2.19, and .# pre-
serves monos, the lifting is unique.

Proposition 4.23. If (X, X1) is layered, then any commut-
ing square as the solid part below admits a lifting k as shown.

P —-— ¥o(Z) % 241(2)

k- | (13)

L=——"" zZ

r

4.5 Congruence statement

We have now characterised the initial vertical algebra for
a 2-signature as our abstract model of syntactic transition
systems from operational semantics. Let us now state the
desired congruence result in this abstract setting.

Definition 4.24. A relation R < %/(X)? over a transition
Y p-monoid X is a congruence iff it is an equivalence relation
and furthermore, omitting 7, the composite

T2 R) = Ty(Z(X?) > To(Z(X)) » Z(X)?
factors through Z(R) — Z/(X)>.
Let us directly reduce this to the following easier form:

Lemma 4.25. An equivalence relation R — 7%/(X)? is a con-

gruence iff Z(R) is both a submonoid and a subalgebra of
D (W (X))?, i.e., omitting %/ and T, both composites

R®R - X?®X?> > (X®X)> - X? (14)

Zo(R) i Zo(Xz) i Zo(X)2 - X2 (15)
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factor through R — X2.

5 Howe’s method

In the previous section, we have introduced 2-signatures
and shown that under suitable hypotheses they admit initial
models (= initial vertical algebras) which are weakly com-
positional. We now want to adapt Howe’s method to this
abstract setting and show that substitution-closed bisimilar-
ity on the initial vertical algebra is a congruence. We thus fix
any vertically finitary, layered 2-signature (X, X1), and let
Z denote its initial vertical algebra. We start in §5.1 by giv-
ing a brief introduction to Howe’s method. In §5.2, we con-
tinue with some preparatory work: we introduce prebisimu-
lation, which is very close to lifting-based bisimulation, ex-
cept that, unlike for plain bisimulations, it makes sense to
take the context closure of a prebisimulation. We exploit this
in §5.3, where we introduce our abstract version of the Howe
closure R® of a relation R. We furthermore reduce congru-
ence of bisimilarity ~% for the initial vertical ¥.;-algebra Z
to the fact that the Howe closure (~%’®)' of the associated
prebisimulation is itself a presimulation. Finally, in §5.4, we
introduce cospan-cellularity and show that if X1 is cospan-
cellular, then (~¥’®)' is indeed a presimulation, which en-
tails the main result.

5.1 A subjective introduction to Howe’s method

Let us start by briefly recalling Howe’s method, loosely fol-
lowing Pitts [27]. Let us return to our running example, big-
step, pure A-calculus, and naively attempt to prove that bisim-
ilarity is context-closed. The idea is to consider some context-
closed relation ~%, containing ~§ by construction, and then
to show that it is a bisimulation. By maximality of ~5, we
then also have ~5 C ~¥ hence both relations coincide and
~% is context-closed as desired.

In order for ~3 to be context-closed, it should at least con-
tain all pairs (Cley, ..., e,], Cle}, ..., €]) with e; ~% ¢/ for all
i € n. Typically, let us consider e; ~5 ¢} and e, ~§ ¢},
and try to prove the simulation property for e; e, ~7 €] €5.
We thus assume e; || Ax.e3 and esfes] | ey, and try to find
ey such that ef || Ax.e5 and e} such that e5[e;] | ey with
ey ~3 €. Because ¢; ~5 e}, we find ¢} || Ax.¢} such that for
all e, e3[e] ~5 ¢4[e]. This ¢} is a natural candidate to suit our
needs. But then how do we find e}? Because ~7 is context-
closed and ~% is substitution-closed, we have

~7 esles] ~7 esles]. (16)
Assuming we are reasoning by induction over the consid-

ered transition proof, we find ej (by induction hypothesis)
and €} (by definition of bisimulation) as in

e3les]

alal  ~7 el ~7 el

A A

" ® /
€4 ~z €4 ~z €y
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This suggests that ~3 should be closed under action of ~%,
ie,~z;~ Z Q ~%, or otherwise said: for alle ~3 ¢’ ~ ¢” we
have e ~7 ¢”. Howe’s idea is to take this as a defining prop-
erty of ~7. Coupling this with context closure, we define ~3
as the smallest context-closed relation satisfying the rules

e N% e/ e/ N% e//

o e /I
By construction, ~7 is reflexive and context-closed. By re-
flexivity and the second rule, it also contains ~%.

Remark 5.1. In §5.3, we use an equivalent (because ~% is
reflexive and transitive), inductive, and perhaps more com-
pact definition.

The initial plan was to show that ~7 is a bisimulation and
deduce that it coincides with ~5. We can in fact optimise
this slightly by first showing that ~7 is a simulation, and
then that its transitive closure (~7)* is symmetric. The rela-
tion (~%)* is thus a symmetric simulation, hence a bisimula-
tion. This entails the last inclusion in the chain ~§ C ~% C
(~3)* € ~%, showing that all relations coincide. Finally, be-
cause ~7 is context-closed, so is ~%, as desired.

5.2 Prebisimulations

In order to adapt Howe’s method to the abstract setting, we
often need to consider the context closure £,(R) of relations,
which lives in &5, not #. It is thus more convenient to resort
to the following variant of bisimulations, adapted from [19].

Definition 5.2. For any X,Y € % and relations R,R’ C
(X)X D (Y), we say that R left-progresses to R, and write
R ~»; R’, when any commuting square of the form below
left, where .#(R) — X is obtained by transposition, may
be embedded into some commuting diagram as below right.

P—— #(R)
P— s 7R
| | J”\ \ )
L—— X tT “Y
Q————»%(R’)

A presimulation is a relation R such that R ~; R, and a
prebisimulation is a presimulation whose converse relation
is also a presimulation.

Intuitively, left-progression is one half of the standard no-
tion of progression [29]: given any transition x; i) X, with
x1 Ry, we find a transition v, i> > such that x R’ y,.
Remark 5.3. This is equivalent to [19, Definition 5.1].

The advantage of prebisimulations over bisimulations is
that they live in %, hence morally only involve terms. How-
ever, they tell us essentially the same thing as bisimulations,
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as shown in [19, §5.2]. In particular, one can prove that pre-
bisimulations are closed under union.

Definition 5.4. The union of all prebisimulations over any
fixed X is called prebisimilarity and denoted by ~¥.

Furthermore, this lifts to substitution-closed prebisimula-
tions: let an X -prebisimulation be a relation R — Z/(M)?
in X -mod, for any M € X -Mod, such that . (R) is a pre-
bisimulation; we have that X-prebisimulations are closed
under unions, whence:

Definition 5.5. Let ~y'® denote the union of all X-prebisi-
mulations over X, called X -prebisimilarity.

Proposition 5.6. We have Z(~%) = ~}v{,®'

5.3 Howe closure

We now want to prove that ~% is a congruence, where, we
recall, Z = yA.(il)w@ (A) is the initial vertical algebra.

Lemma 5.7. Iffv%® is both a subalgebra and a submonoid
of Z(Z)?, then ~% is a congruence.

Proof. We have Z(~3) = ~,® by Proposition 5.6, so we
conclude by Lemma 4.25 O

So we need to prove that ~,® is both a subalgebra and a
submonoid. For this, we use the following variant of Howe’s
construction.

Definition 5.8. For any relations R and A on (% (X)),
let #R(A) denote the image (in %) of I + L((A); R in X2,
where [ is viewed as a relation through the unit and diagonal
maps I — X — X2 and ; denotes sequential composition
of relations. The Howe closure R® of any R is the initial /Z%-
algebra, i.e., the (directed) union | J, Z%(@).

Let us first show the following lemma, in case X = Z.

Lemma5.9. IfR C 72 is reflexive, transitive, and a Z-module,
then (omitting im(=) for readability)
(i) ZCR® (andsol CR®);
(if) R*;R € R® (and soR C R*® by (i));
(iiif) Xo(R®) C R®;
(iv) R*® R* CR*® (andsoR* ® Z C R® by (i)).
Corollary 5.10. We have 7(R®); R C R".

We then narrow down the goal as follows, using (-)* to
denote transitive closure.

Lemma 5.11. If (~,®)** is a prebisimulation, then ~3 is a
congruence.

Proof. By hypothesis, (~;’®)°Jr is a prebisimulation, hence

(~7%®)** € ~;®. Moreover, the converse also holds by Lem-
ma 5.9(ii), so (~y®)** = ~’®. But by Lemma 5.9 and the
fact that subalgebras and submonoids are stable under tran-

.. V,® . .
sitive closure, (~,)** is a subalgebra and a submonoid,

hence so is ~%’®, and we conclude by Lemma 5.7. m|
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This would leave us with the task of delineating hypothe-
ses under which (~%’®)’Jr is indeed a prebisimulation, but
we can narrow this down a bit further (this is sometimes
called the transitive closure trick), using the following two
intermediate lemmas.

Lemma 5.12. IfR C X? in % is a presimulation up to tran-
sitivity [29], i.e., R ~»; RT, then R™ is a presimulation.

Lemma 5.13. IfR C 72 is an equivalence relation, then so
isR**.

Lemma 5.14. If (~®)* is a presimulation, then ~3 is a con-
gruence.

V,Q\e+

Proof. By Lemma 5.12, (~4 is a presimulation. But

ot
(~%’®) is symmetric by Lemma 5.13, so it is in fact a pre-
bisimulation, hence we conclude by Lemma 5.11. O

5.4 Familiality and cellularity

In the previous section, we have established that congru-
ence of ~§ will follow from (~,®)* being a presimulation,
and so are now seeking sufficient conditions for this. Our
key tool will be cellularity, a special case of familiality. As
we have already seen that Zéx is familial (Proposition 2.6),
let us now start by proving that 24" is so too.

Example 5.15. L4 is familial, and Zéx — L4 preserves
generics. Using Theorem 2.5, the interesting point is that
we have (X)) = [yq, X] + [Eg, X1, where Eg denotes

the colimit of the diagram
20 Z(y1) Pl % Z(yo) Zs)

X
Z(yy) (y1 +yo) Z(yy)

with ¥ denoting the transpose of the morphism x: y; —
% £ (y, +yg) corresponding by Yoneda to the element

(imy(idq)) (in,(idy)) € 7 L (y1 + ¥0)(0).

On the other hand, il is not familial, because the candidate
assignment el(X1(1)) — & is not functorial.

Howe’s approach to proving that (~¥’®)' is a presimu-
lation is by induction on the given transition. More gener-
ally, for any prebisimulation R satisfying the hypotheses of
Lemma 5.9, we prove by induction on # that any commuting
diagram as the solid part below left

P R®

S%/wif(o@HZK \ Rh—)R'%Z
<N\ T

J ““---\———;Z L10®) — Z

o y R®

may be completed as shown. This indeed entails that R® is
a presimulation, because Z is the colimit of all Z?(O®), any
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morphism L. — Z factors through some i{’(O(’B) — Z,hence
we get R® ~»; R® as desired. But this is equivalent to the
relation R}, < i{l(O@)) X Z obtained by pullback above right
is a presimulation, so we want to prove by induction that
each R}, is a presimulation.

Let us isolate the interesting part of this inductive proof:

Lemma 5.16. For alln > 0, R}, is a presimulation if, for all
commuting diagrams

p L Q
| | | o
£1(A) Xy(B) £1(0),

Zy(k) Z1()

where— denotes generic morphisms, k and! are such that any
diagram of the form below left may be completed as shown.

A——R

By induction hypothesis, we know that R} _; is a presim-
ulation, but the problem is that (k, /) may not be of the form
(s, t), and will rarely be so in practice. This is precisely where
cellularity comes into play.

Definition 5.17. A copresimulationis any cospan (k, ) such
that for any presimulation R < X XY, any square as in (19,
right) may be completed as shown.

The functor X is cospan-cellular iff it is familial and, for
all commuting diagrams (18) with generic vertical arrows,
the cospan (k, ) is a copresimulation.

If X, is cospan-cellular, then by induction hypothesis R,_;
is a presimulation, so (19, left) may be completed as shown,
so by Lemma 5.16 R}, is a presimulation. We have proved:

Lemma 5.18. If L, is cospan-cellular and R C Z? is a pre-
bisimulation satisfying the hypotheses of Lemma 5.9, the rela-
tion R® is a presimulation.

Thus, by Lemma 5.14, we obtain:

Theorem 5.19. For any vertically finitary, layered 2-signa-
ture (Lo, L1) with L1 cospan-cellular, substitution-closed bi-
similarity ~3 on the initial vertical algebra is a congruence.

A mysterious bit remains: what does cospan-cellularity
mean? In order to demonstrate that our running example
LA is cospan-cellular, we first need to develop some basic
results about copresimulations.

Lemma 5.20. Copresimulations contain the basic cospans (s, t)
and identity cospans. Moreover, they are closed under point-
wise coproduct, precomposition of their right-hand leg with
any morphism, and cospan composition.
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Example 5.21. Recalling Example 5.15, we need to show
that the cospan -#(yo +yo) — Eg < Z(y1) corresponding
to the f-rule is a copresimulation, which holds by Lemma 5.20,
as it is the composite of

Z(Fo+y0) = Ly +¥0) = L1 +30) & Z(y0)
and the basic cospan £ (yy — yy < y1).

Example 5.22. The call-by-value A-calculus may be treated
similarly, with the same X, using the same rule for val-
ues (5, right), but changing rule (5, left) to
e e e1[A.ep] Ues

ereyles
The induced functor X is cospan-cellular by Lemma 5.20,
since the cospan (18) for the new rule may be obtained by
starting with the pointwise coproduct

er ey

Z(25) e
Z2-y) —— L Q2-yy)) —— L 2-y1)
(where 7 - c denotes the n-fold coproduct c + ... + ¢), precom-
posing its right-hand leg with

X Z(y1)+A
Lyo) = L(y1)+L(y)) ——— 2-L(y1) = L (2-y1),

and then composing with the basic cospan.

6 Conclusion and perspectives

We have presented an abstract framework, 2-signatures on

Howe contexts, in which, under suitable hypotheses, substi-
tution-closed bisimilarity is a congruence. We have proved

new initiality and familiality results along the way, notably

an adaptation of work by Fiore and collaborators to the skew-
monoidal case. Finally, we have covered the basic examples

of call-by-name and call-by-value variants of big-step A-cal-
culus. Future research directions include trying to gener-
alise our framework to cover variants of Howe’s method

which currently seem to lie beyond its scope, e.g., so-called

early-style bisimilarity in higher-order 7t-calculus or calculi

with passivation [24]. Similarly, we plan to try and apply

our techniques to variants of applicative bisimilarity, e.g.,
open bisimilarity [23].
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