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Introduction Operational Game Semantics (OGS [Lai07; LL07]) is a method for building trace
models for higher-order languages based on ideas from pointer games [HO00]—most importantly
keeping traces first-order. These models are typically proven sound (and sometimes complete) w.r.t.
contextual equivalence. We present a formal treatment of this technique in the Coq proof assistant.
While there is no obvious obstruction to doing this, OGS is generally developed in set theory, which
forces us to adapt some notions to better fit the type theory of Coq. In particular, (1) we choose the
more computational coalgebraic point of view and (2) we adopt the intrinsically well-scoped approach
to binders including for traces. Concretely this consists of an indexed adaptation of Interaction
Trees [Xia+20] closely related to the transition system approach to games [LS14].

In doing so we also abstract away the specifics of the modelled language and develop an abstract
account of OGS, expliciting the hypotheses needed for the soundness proof to go through. Building
on Fiore et al.’s work on substitution [FPT99; Fio08; FS22], we treat a large class of simply-typed
languages with deterministic but possibly non-terminating evaluation, presented as abstract machines.
Notably, we have instantiated our framework with simply-typed λ-calculus and System D [DA20], a
variant of polarized µµ̃-calculus.

In this talk, we propose (1) a brief rundown on operational game semantics, (2) a high-level view
of our contributions, and finally (3) a more technical elaboration of a specific aspect of the correctness
proof, namely well-definedness of the composition of Proponent- and Opponent-strategies. Indeed,
this crucial point involves the so-called infinite chit-chat problem, to which we provide an abstract
solution we believe may interest the GALOP audience.

Operational Game Semantics Following interactive semantics, the behavior of a program can be
represented as the (infinite) tree of its interactions with any execution environment. In OGS, the LTS
associated to a term is computed by evaluating it to a normal form, say E[x v] and issuing a label
corresponding to the normal form. As embarking higher-order values in labels leads to challenging
notions of bisimilarity, only an abstracted, or inert version of the normal form is sent, with fresh
channel names bound and inserted in place of subterms we wish to hide. In the case of E[x v], the
label is app(x) and binds two channels, one to hide the argument v and one to hide the continuation
context E. Such a transition leads the LTS to a passive state where the environment may resume
computation by choosing an available channel to send a message to.

In this setup, labels are semantically simpler, but they bind and reference channel names. To tackle
this formally, we resort to a static scoping discipline and use dependently typed data structures. Labels
do not live on their own but are indexed by some channel scope. In addition, to each scoped label,
we associate the freshly bound channels it introduces. The OGS LTS configurations are then indexed
by positions consisting of two channel scopes: one for channels owned by the player, the other for
channels owned by its opponent, each side sending messages on their opponent’s owned channels and
receiving on their own channels.

An LTS over such a label structure consists of sets of active and passive configurations indexed
by active and passive positions, with two transition functions appropriately choosing or receiving
the next label and producing the next configuration. Given an evaluator eval defined in the delay
monad [Cap05] we construct such an LTS, together with interpretations J−Kact and J−Kpas respectively
from terms to active configurations and from contexts-and-substitutions to passive configurations.
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Productive Composition We recall that two terms u, v are CIU-equivalent iff:

∀E, σ, eval(E[u[σ]]) ≈⇓ eval(E[v[σ]])

where ≈⇓ means cotermination in the delay monad.
To prove the soundness of our model, the central technique of OGS is to provide a composition

operation ‖ between active and passive configurations, and to prove the following1 for all terms u,
evaluation contexts E and substitutions σ:

eval(E[u[σ]]) ≈⇓ JuKact ‖ JE, σKpas (1)

Intuitively this composition operator first extracts a message from the currently active configura-
tion, then sends this message to the passive configuration and finally continues by swapping the roles
and starting over. At each point, the exchanged message could may also be sent to a final channel, in
which case the composition is finished. More formally, this composition operator is given by the fix-
point of an equation system, justified by the fact that the delay monad is completely iterative [Acz+03],
i.e., has an operator iter : (X → D(X + Y )) → (X → D(Y )).

Now to prove equation (1) it is only natural to use an argument of uniqueness of fixpoints. Indeed,
the hypotheses we ask on the language buy us the core of the proof that “substituting then evaluating”
is a fixpoint of “one step of composition” (with respect to strong bisimulation in the delay monad).
Alas, fixpoints in the delay monad are not unique in general. Milius et al. have proven that they are
when the equation system is guarded, that is, it never directly loops back ([Acz+03; ML17], example
2.12), but our equations are not guarded! As it happens, when substituting the head variable of a
normal form with a value, one may sometimes get again a normal form, in particular when the value
is just another variable. This situation is what is commonly called a chit-chat between Proponent and
Opponent.

Our way out of this hurdle is two-fold. First, we introduce a notion of eventually guardedness
for equation systems (where the guard does not need to happen at every loop step but just some
finite amount of steps apart) and prove the uniqueness of fixpoints2 in this case for the delay monad.
Second, we prove the eventual guardedness of the composition’s equation system. This first requires
to prove an acyclicity property on the suspended value environment of Proponent and Opponent. We
solve this by using a refined static typing of the game structure. Instead of two unrelated scopes
for Proponent and Opponent channels, we switch to a joint interlaced representation. This enables
remembering the alternated sequence of scope-extensions by each player and statically forbids any
loop from appearing.

At this point the equation system of composition is still not eventually guarded. Indeed we can
show that after some finite amount of composition steps, either composition has ended, or we are
guarded, or we have instanciated the head variable of a normal form with a non-value variable. But
this last case does not necessarily produce a redex. The missing technical condition on the language
which enables to conclude states that if one repeatedly replaces the head variable of a normal form
with a non-variable value, then one eventually gets a non-normal form (i.e., a redex). While easy
to check and true in all instances we have looked at, this condition is non-trivial and was to our
knowledge never explicitely stated.
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