Operational Game Semantics (OGS) formally: Let's talk about chattering

Peio Borthelle, LAMA, Univ. Savoie Mont Blanc, CNRS, France Tom Hirschowitz, LAMA, Univ. Savoie Mont Blanc, CNRS, France Guilhem Jaber, LS2N, Nantes Université, France Yannick Zakowski, LIP, ENS de Lyon, Inria, France

GALOP'24 - 2024/01/14

A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness...

A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness...
... formally (programming is the only way I like math)

A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness...
... formally (programming is the only way I like math)
... this is actually kind of tricky?! (me, one year in)

$$
\frac{\llbracket p \rrbracket_{\mathrm{OGS}} \approx \llbracket q \rrbracket_{\mathrm{oGS}}}{\forall E, \gamma, \operatorname{eval}(E[p[\gamma]]) \equiv_{\text {res }} \operatorname{eval}(E[q[\gamma]])} \text { soundness }
$$

Specificities of formal proofs

Formalization challenges
Syntax and operational semantics are tedious.
\Rightarrow Just enough precision (not more).
OGS requires subtle coinductive reasoning.
\Rightarrow Answer in this talk.
Key choices
Traces in intrinsically typed and scoped De-Bruijn.
Axiomatize what makes OGS sound.
Copattern- and coalgebra-based presentation.

Outline

1. Our flavor of Operational game semantics.
2. Composition and the mystary hypothesis.
3. Concluding with eventual guardedness.

Our flavor of Operational Game Semantics

Observations*

What can you ask to a...
function?
pair?
stream?
continuation?
-app ($\mathrm{V}, \kappa)$
$\cdot \mathbf{f s t}(\kappa), \cdot \operatorname{snd}(\kappa)$
\cdot head (κ), $\operatorname{tail}(\kappa)$
-ret(v)

* also called "copattern"

In practice

Partiality: the delay monad

$$
\mathcal{D}(X):=\nu A \cdot A+X
$$

Operational semantics: sequent calculus-style

$$
\begin{aligned}
& \text { Val: Ctx } \rightarrow \text { Typ } \rightarrow \text { Set Conf: Ctx } \rightarrow \text { Set } \quad \text { Obs: Typ } \rightarrow \text { Set } \\
& \text { eval: } \forall \Gamma, \text { Conf } \Gamma \rightarrow \mathcal{D}(\text { Nf } \Gamma) \quad \text { holes: Obs } \tau \rightarrow \operatorname{Ctx} \\
& \text { Nf } \Gamma:=(x: \tau \in \Gamma) \times(0: \text { Obs } \tau) \times(\gamma: \text { holes }(0) \rightarrow \text { Val } \Gamma) \\
& c \approx_{c t x} d:=\forall \gamma, \text { eval }(c[\gamma]) \equiv \text { obs } \operatorname{eval}(d[\gamma])
\end{aligned}
$$

Operational Game Semantics

Strategies: Set families S^{+}, S^{-}, equipped with:

$$
\begin{aligned}
& \text { play: } S^{+}(\Gamma, \Delta) \rightarrow \mathcal{D}\left(\left(0: \mathrm{Obs}^{\bullet} \Gamma\right) \times \mathrm{S}^{-}(\Gamma, \Delta+\operatorname{holes}(0))\right) \\
& \text { coplay: } S^{-}(\Gamma, \Delta) \rightarrow\left(0: \text { Obs }^{\bullet} \Delta\right) \rightarrow \mathrm{S}^{+}(\Gamma+\operatorname{holes}(0), \Delta)
\end{aligned}
$$

Operational Game Semantics

Strategies: Set families S^{+}, S^{-}, equipped with:

$$
\begin{aligned}
& \text { play: } S^{+}(\Gamma, \Delta) \rightarrow \mathcal{D}\left(\left(0: \text { Obs }^{\bullet} \Gamma\right) \times S^{-}(\Gamma, \Delta+\operatorname{holes}(0))\right) \\
& \text { coplay: } S^{-}(\Gamma, \Delta) \rightarrow\left(0: \text { Obs }^{\bullet} \Delta\right) \rightarrow S^{+}(\Gamma+\operatorname{holes}(0), \Delta)
\end{aligned}
$$

The "operational strategy"

$$
\begin{aligned}
S^{+}(\Gamma, \Delta) & :=(c: \operatorname{Conf} \Gamma) \times\left(\gamma: \Delta \rightarrow_{\text {Val }} \Gamma\right) \\
S^{-}(\Gamma, \Delta) & :=\Delta \rightarrow_{\text {Val }} \Gamma \\
\text { play } & :=\text { "eval then hide arguments" } \\
\text { coplay } & :=\text { "apply observation" }
\end{aligned}
$$

Levy \& Staton: Transition systems over games Xia et al.: Interaction trees

Composition and the mystery

hypothesis

Why composition?

OGS soundness in a nutshell

1. Composition respects bisimilarity: congruence.
2. Composition simulates substitution: adequacy.

Given $\llbracket c \rrbracket \approx \llbracket d \rrbracket$, for any γ,

$$
\begin{aligned}
\operatorname{eval}(c[\gamma]) & \approx \llbracket c \rrbracket \| \llbracket \gamma \rrbracket & & (\text { by } 2) \\
& \approx \llbracket d \rrbracket \| \llbracket \gamma \rrbracket & & (\text { by } 1) \\
& \approx \operatorname{eval}(d[\gamma]) & & (\text { by } 2)
\end{aligned}
$$

Characterizing composition

$$
\begin{aligned}
&-\|-: \forall \Phi, S^{+} \Phi \rightarrow S^{-} \Phi \rightarrow \mathcal{D}(\text { Res }) \\
&(c, \gamma) \| \delta:= \text { let } x \cdot o(\varphi) \leftarrow \operatorname{eval}(c) ; \\
& \text { case } x \begin{cases}\text { final } & \mapsto \operatorname{ret}(x \cdot o) \\
\text { shared } & \mapsto(\delta(x) \cdot o(\text { fresh }), \delta) \|(\gamma+\varphi)\end{cases}
\end{aligned}
$$

Characterizing composition

$$
\begin{aligned}
&-\|-: \forall \Phi, S^{+} \Phi \rightarrow S^{-} \Phi \rightarrow \mathcal{D}(\text { Res }) \\
&(c, \gamma) \| \delta:=\text { let } x \cdot o(\varphi) \leftarrow \operatorname{eval}(c) ; \\
& \text { case } x \begin{cases}\text { final } & \mapsto \operatorname{ret}(x \cdot o) \\
\text { shared } & \mapsto(\delta(x) \cdot o(\text { fresh }), \delta) \|(\gamma+\varphi)\end{cases}
\end{aligned}
$$

This is not a coinductive definition

Chattering, or, why everything always falls apart

A bad looping example

$$
\begin{aligned}
(c, \gamma) \| \delta & \Gamma, \Delta:=[\neg \mathrm{Bool}] \\
c:=\langle\text { true } \| x\rangle & \gamma:=y \mapsto x
\end{aligned} \delta:=x \mapsto y
$$

柬 Looping without ever doing a reduction step.眯

Chattering, or, why everything always falls apart

A bad looping example

$$
\begin{gathered}
\qquad(c, \gamma) \| \delta \quad \Gamma, \Delta:=[\neg \text { Bool }] \\
c:=\langle\operatorname{true} \| x\rangle \quad \gamma:=y \mapsto x \quad \delta:=x \mapsto y \\
\text { 柬 Looping without ever doing a reduction step. 柬 }
\end{gathered}
$$

Two live processes sharing a channel
Fine: Stop interacting with the world.
Not Fine: Pointing fingers.

$$
\star \vec{l}
$$

Revisiting OGS positions

An order on variables

Arguments should only mention older variables.
Γ and Δ should form an acyclic bipartite graph.

Better types

An interleaving of the two scopes: $\Phi:=\Gamma_{0}, \Delta_{0}, \Gamma_{1}, \Delta_{1}, \ldots$

$$
\begin{aligned}
& \operatorname{my}(\Phi):=\Gamma_{0}, \Gamma_{1}, \ldots \\
& \operatorname{your}(\Phi):=\Delta_{0}, \Delta_{1}, \ldots
\end{aligned}
$$

Revisiting assignments

Replace $\Gamma \rightarrow_{\text {val }} \Delta$ with
some funny pair of mutual inductives.

Refine OGS states.
$S^{+} \Phi:=\operatorname{Conf}(m y \Phi) \times E n v^{+} \Phi$
$S^{-} \Phi:=E n v^{-} \Phi$
$E n v{ }^{+} \Phi \quad E n v{ }^{-} \Phi$
Γ_{n}

Finite chattering

Eventually, either

1. Interaction ends.
2. Some (head) variable is replaced by a non-variable value.

Finite chattering

Eventually, either

1. Interaction ends.
2. Some (head) variable is replaced by a non-variable value.

Not enough!

$$
\langle x \| y\rangle \xrightarrow{\text { chatter }}\langle x \| \cdot \operatorname{app}(\text { true }, z)\rangle \xrightarrow{\text { chatter }}\langle\text { גa.t } \| \cdot \operatorname{app}(\text { true }, z)\rangle
$$

Two chatters for a redex.

The taystery hypothesis

Repeatedly instanciating the head variable of a normal-form by a non-variable value eventually leads to a redex.
$-\triangleright-:$ Obs \rightarrow Obs \rightarrow Prop $\quad \frac{\operatorname{eval}\left(v \cdot O_{1}(\gamma)\right) \approx \operatorname{ret}\left(x \cdot O_{2}(\delta)\right)}{O_{1} \triangleright O_{2}}$
"Finite redexes"
$-\triangleright-$ is well-founded.

Concluding with eventual guardedness

Eventual guardedness

Recursive equations

Guardedness criteria

$e x$ is guarded if $e x \neq \operatorname{ret}(\operatorname{inl}(x))$.
$e x$ is eventually guarded if there exists an n such that $e^{n} x$ is guarded.

Pointwise (eventually) guarded equations admit unique fixpoints (w.r.t. strong bisimilarity).

Conclusion

Contributions

- Formalized generic soundness theorem for OGS.
- OGS for several $\mu \tilde{\mu}$ and λ-calculi.
- New? interesting family of guard conditions.

Future work ideas

- Coq: more flexible language interface.
- Expand: effectful languages.
- Adjacent: completeness, normal form bisimulations.

