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A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness…

… formally (programming is the only way I like math)
… this is actually kind of tricky?! (me, one year in)

JpKOGS ≈ JqKOGS
∀E, γ, eval(E[p[γ]]) ≡res eval(E[q[γ]])

soundness
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Specificities of formal proofs

Formalization challenges

Syntax and operational semantics are tedious.
⇒ Just enough precision (not more).

OGS requires subtle coinductive reasoning.
⇒ Answer in this talk.

Key choices

Traces in intrinsically typed and scoped De-Bruijn.
Axiomatize what makes OGS sound.
Copattern- and coalgebra-based presentation.
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Outline

1. Our flavor of Operational game semantics.
2. Composition and the mystery hypothesis.
3. Concluding with eventual guardedness.
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Our flavor of Operational Game
Semantics



Observations*

What can you ask to a…

function? ·app(v, κ)
pair? ·fst(κ), ·snd(κ)
stream? ·head(κ), ·tail(κ)
continuation? ·ret(v)

* also called “copattern”
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In practice

Partiality: the delay monad

D(X) := ν A.A+ X

Operational semantics: sequent calculus-style

Val : Ctx→ Typ→ Set Conf : Ctx→ Set Obs : Typ→ Set

eval : ∀Γ, Conf Γ→ D(Nf Γ) holes : Obs τ → Ctx

Nf Γ := (x : τ ∈ Γ)× (o : Obs τ)× (γ : holes(o)→Val Γ)

c ≈ctx d := ∀γ, eval (c[γ])≡Obs eval (d[γ])
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Operational Game Semantics

Strategies: Set families S+, S−, equipped with:

play : S+ (Γ,∆)→ D
(
(o : Obs• Γ)× S− (Γ,∆+ holes(o))

)
coplay : S− (Γ,∆)→ (o : Obs• ∆)→ S+ (Γ + holes(o),∆)

The “operational strategy”

S+(Γ,∆) := (c : Conf Γ)× (γ : ∆→Val Γ)

S−(Γ,∆) := ∆→Val Γ

play := “eval then hide arguments”
coplay := “apply observation”

Levy & Staton: Transition systems over games
Xia et al.: Interaction trees
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Composition and the mystery
hypothesis



Why composition?

OGS soundness in a nutshell

1. Composition respects bisimilarity: congruence.
2. Composition simulates substitution: adequacy.

Given JcK ≈ JdK, for any γ,

eval(c[γ]) ≈ JcK ‖ JγK (by 2)
≈ JdK ‖ JγK (by 1)
≈ eval(d[γ]) (by 2)
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Characterizing composition

−‖− : ∀Φ, S+ Φ→ S− Φ→ D(Res)

(c, γ) ‖ δ := let x·o(ϕ)← eval(c) ;

case x
{
final 7→ ret(x·o)
shared 7→ (δ(x)·o(fresh), δ) ‖ (γ + ϕ)

This is not a coinductive definition
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Chattering, or, why everything always falls apart

A bad looping example

(c, γ) ‖ δ Γ,∆ := [¬Bool]

c := 〈 true ‖ x 〉 γ := y 7→ x δ := x 7→ y

����� Looping without ever doing a reduction step. �����

Two live processes sharing a channel

Fine: Stop interacting with the world.
Not Fine: Pointing fingers.
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Revisiting OGS positions

An order on variables

Arguments should only mention older variables.
Γ and ∆ should form an acyclic bipartite graph.

Better types

An interleaving of the two scopes: Φ := Γ0,∆0,Γ1,∆1, . . .

my(Φ) := Γ0,Γ1, . . .

your(Φ) := ∆0,∆1, . . .
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Revisiting assignments

Replace Γ→Val ∆ with
some funny pair of
mutual inductives.

Refine OGS states.

S+ Φ := Conf (my Φ)× Env+ Φ

S− Φ := Env− Φ

Env+Φ Env−Φ

Γn

...
...

Γ2 ∆2

Γ1 ∆1

Γ0 ∆0
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Finite chattering

Eventually, either

1. Interaction ends.
2. Some (head) variable is replaced by a non-variable value.

Not enough!

〈 x ‖ y 〉 chatter−−−−→ 〈 x ‖ ·app(true, z) 〉 chatter−−−−→ 〈λa.t ‖ ·app(true, z) 〉

Two chatters for a redex.
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The mystery hypothesis

Repeatedly instanciating the head variable of a normal-form
by a non-variable value eventually leads to a redex.

− .− : Obs→ Obs→ Prop eval (v·o1(γ)) u ret (x·o2(δ))
o1 . o2

“Finite redexes”

− .− is well-founded.
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Concluding with eventual
guardedness



Eventual guardedness

Recursive equations
e : X → D( X + Y )

variables

recursive calls constants

Guardedness criteria

e x is guarded if e x 6= ret(inl(x)).
e x is eventually guarded if there exists an n such that en x is
guarded.

Pointwise (eventually) guarded equations admit unique
fixpoints (w.r.t. strong bisimilarity).
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Conclusion

Contributions

• Formalized generic soundness theorem for OGS.
• OGS for several µµ̃ and λ-calculi.
• New? interesting family of guard conditions.

Future work ideas

• Coq: more flexible language interface.
• Expand: effectful languages.
• Adjacent: completeness, normal form bisimulations.
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