
Operational Game Semantics (OGS) formally:
Let’s talk about chattering

Peio Borthelle, LAMA, Univ. Savoie Mont Blanc, CNRS, France
Tom Hirschowitz, LAMA, Univ. Savoie Mont Blanc, CNRS, France
Guilhem Jaber, LS2N, Nantes Université, France
Yannick Zakowski, LIP, ENS de Lyon, Inria, France

GALOP’24 — 2024/01/14

A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness…

… formally (programming is the only way I like math)
… this is actually kind of tricky?! (me, one year in)

JpKOGS ≈ JqKOGS
∀E, γ, eval(E[p[γ]]) ≡res eval(E[q[γ]])

soundness

1

A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness…
… formally (programming is the only way I like math)

… this is actually kind of tricky?! (me, one year in)

JpKOGS ≈ JqKOGS
∀E, γ, eval(E[p[γ]]) ≡res eval(E[q[γ]])

soundness

1

A bit of context

Original motivation: interactive semantics for FFI

Step 1: use OGS, prove soundness…
… formally (programming is the only way I like math)
… this is actually kind of tricky?! (me, one year in)

JpKOGS ≈ JqKOGS
∀E, γ, eval(E[p[γ]]) ≡res eval(E[q[γ]])

soundness

1

Specificities of formal proofs

Formalization challenges

Syntax and operational semantics are tedious.
⇒ Just enough precision (not more).

OGS requires subtle coinductive reasoning.
⇒ Answer in this talk.

Key choices

Traces in intrinsically typed and scoped De-Bruijn.
Axiomatize what makes OGS sound.
Copattern- and coalgebra-based presentation.

2

Outline

1. Our flavor of Operational game semantics.
2. Composition and the mystery hypothesis.
3. Concluding with eventual guardedness.

3

Our flavor of Operational Game
Semantics

Observations*

What can you ask to a…

function? ·app(v, κ)
pair? ·fst(κ), ·snd(κ)
stream? ·head(κ), ·tail(κ)
continuation? ·ret(v)

* also called “copattern”

4

In practice

Partiality: the delay monad

D(X) := ν A.A+ X

Operational semantics: sequent calculus-style

Val : Ctx→ Typ→ Set Conf : Ctx→ Set Obs : Typ→ Set

eval : ∀Γ, Conf Γ→ D(Nf Γ) holes : Obs τ → Ctx

Nf Γ := (x : τ ∈ Γ)× (o : Obs τ)× (γ : holes(o)→Val Γ)

c ≈ctx d := ∀γ, eval (c[γ])≡Obs eval (d[γ])

5

Operational Game Semantics

Strategies: Set families S+, S−, equipped with:

play : S+ (Γ,∆)→ D
(
(o : Obs• Γ)× S− (Γ,∆+ holes(o))

)
coplay : S− (Γ,∆)→ (o : Obs• ∆)→ S+ (Γ + holes(o),∆)

The “operational strategy”

S+(Γ,∆) := (c : Conf Γ)× (γ : ∆→Val Γ)

S−(Γ,∆) := ∆→Val Γ

play := “eval then hide arguments”
coplay := “apply observation”

Levy & Staton: Transition systems over games
Xia et al.: Interaction trees

6

Operational Game Semantics

Strategies: Set families S+, S−, equipped with:

play : S+ (Γ,∆)→ D
(
(o : Obs• Γ)× S− (Γ,∆+ holes(o))

)
coplay : S− (Γ,∆)→ (o : Obs• ∆)→ S+ (Γ + holes(o),∆)

The “operational strategy”

S+(Γ,∆) := (c : Conf Γ)× (γ : ∆→Val Γ)

S−(Γ,∆) := ∆→Val Γ

play := “eval then hide arguments”
coplay := “apply observation”

Levy & Staton: Transition systems over games
Xia et al.: Interaction trees 6

Composition and the mystery
hypothesis

Why composition?

OGS soundness in a nutshell

1. Composition respects bisimilarity: congruence.
2. Composition simulates substitution: adequacy.

Given JcK ≈ JdK, for any γ,

eval(c[γ]) ≈ JcK ‖ JγK (by 2)
≈ JdK ‖ JγK (by 1)
≈ eval(d[γ]) (by 2)

7

Characterizing composition

−‖− : ∀Φ, S+ Φ→ S− Φ→ D(Res)

(c, γ) ‖ δ := let x·o(ϕ)← eval(c) ;

case x
{
final 7→ ret(x·o)
shared 7→ (δ(x)·o(fresh), δ) ‖ (γ + ϕ)

This is not a coinductive definition

8

Characterizing composition

−‖− : ∀Φ, S+ Φ→ S− Φ→ D(Res)

(c, γ) ‖ δ := let x·o(ϕ)← eval(c) ;

case x
{
final 7→ ret(x·o)
shared 7→ (δ(x)·o(fresh), δ) ‖ (γ + ϕ)

This is not a coinductive definition

8

Chattering, or, why everything always falls apart

A bad looping example

(c, γ) ‖ δ Γ,∆ := [¬Bool]

c := 〈 true ‖ x 〉 γ := y 7→ x δ := x 7→ y

����� Looping without ever doing a reduction step. �����

Two live processes sharing a channel

Fine: Stop interacting with the world.
Not Fine: Pointing fingers.

9

Chattering, or, why everything always falls apart

A bad looping example

(c, γ) ‖ δ Γ,∆ := [¬Bool]

c := 〈 true ‖ x 〉 γ := y 7→ x δ := x 7→ y

����� Looping without ever doing a reduction step. �����

Two live processes sharing a channel

Fine: Stop interacting with the world.
Not Fine: Pointing fingers.

9

Revisiting OGS positions

An order on variables

Arguments should only mention older variables.
Γ and ∆ should form an acyclic bipartite graph.

Better types

An interleaving of the two scopes: Φ := Γ0,∆0,Γ1,∆1, . . .

my(Φ) := Γ0,Γ1, . . .

your(Φ) := ∆0,∆1, . . .

10

Revisiting assignments

Replace Γ→Val ∆ with
some funny pair of
mutual inductives.

Refine OGS states.

S+ Φ := Conf (my Φ)× Env+ Φ

S− Φ := Env− Φ

Env+Φ Env−Φ

Γn

...
...

Γ2 ∆2

Γ1 ∆1

Γ0 ∆0

11

Finite chattering

Eventually, either

1. Interaction ends.
2. Some (head) variable is replaced by a non-variable value.

Not enough!

〈 x ‖ y 〉 chatter−−−−→ 〈 x ‖ ·app(true, z) 〉 chatter−−−−→ 〈λa.t ‖ ·app(true, z) 〉

Two chatters for a redex.

12

Finite chattering

Eventually, either

1. Interaction ends.
2. Some (head) variable is replaced by a non-variable value.

Not enough!

〈 x ‖ y 〉 chatter−−−−→ 〈 x ‖ ·app(true, z) 〉 chatter−−−−→ 〈λa.t ‖ ·app(true, z) 〉

Two chatters for a redex.

12

The mystery hypothesis

Repeatedly instanciating the head variable of a normal-form
by a non-variable value eventually leads to a redex.

− .− : Obs→ Obs→ Prop eval (v·o1(γ)) u ret (x·o2(δ))
o1 . o2

“Finite redexes”

− .− is well-founded.

13

Concluding with eventual
guardedness

Eventual guardedness

Recursive equations
e : X → D(X + Y)

variables

recursive calls constants

Guardedness criteria

e x is guarded if e x 6= ret(inl(x)).
e x is eventually guarded if there exists an n such that en x is
guarded.

Pointwise (eventually) guarded equations admit unique
fixpoints (w.r.t. strong bisimilarity).

14

Conclusion

Contributions

• Formalized generic soundness theorem for OGS.
• OGS for several µµ̃ and λ-calculi.
• New? interesting family of guard conditions.

Future work ideas

• Coq: more flexible language interface.
• Expand: effectful languages.
• Adjacent: completeness, normal form bisimulations.

15

	Our flavor of Operational Game Semantics
	Composition and the mystery hypothesis
	Concluding with eventual guardedness

