)

Check for

Artifact Report: an Abstract, Certified Account
of Operational Game Semantics

Peio Borthelle! ™), Tom Hirschowitz2, Guilhem Jaber?, and Yannick Zakowski*

! Université Savoie Mont Blanc, Chambéry, France
peio.borthelleQuniv-smb.fr
2 CNRS, Paris, France
3 Nantes Université, Nantes, France
4 Tnria, Paris, France

This artifact report is a companion to the ESOP’25 paper An abstract, cer-
tified account of operational game semantics [3]. The paper describes the con-
struction of a sound model for an abstract notion of language. The model is built
using a semantic technique named Operational Game Semantics (OGS).

All our results are mechanised in the Coq proof assistant: this mechani-
sation (The proof artifact is archived at https://doi.org/10.5281/zenodo.
14697618.) constitutes the artifact we discuss in the present documentAs per
Springer style, we are unable to fix footnote link in Abstract. So we have move
the text within the brackets.. More specifically, our mechanisation covers our
main result, the soundness of the abstract OGS model w.r.t. substitution equiv-
alence (Theorem 8), as well as four example calculi: two variants of call-by-value
A-calculus and two variants of pfi-calculus [4,5]. The only axiom used is the Ax-
iom K [17] for equality proof irrelevance (To ease dependent pattern matching
due to the intrinsically scoped representation.).

The README explains the installation process and the structure of the code. An
online rendering (https://lapinOt.github.io/ogs/esop25/Readme.html.) is
available thanks to Alectryon [12]. Furthermore, the main paper provides sys-
tematic hyperlinks from statements to their Coq counterparts. We encourage
the interested reader to use these tools to navigate the code.

In this document, we focus first on users: how to read and instantiate our
main result. We then detail salient technical aspects of our mechanisation.

1 The 0GS Library from the Perspective of a User

Our library is intended to be reusable. In this section, we describe to the inter-
ested user how to understand our result, and how to instantiate it.

Soundness The main result, Theorem 8, is proven in 0GS/Soundness.v. It
quantifies over any suitable language machine, that is, an axiomatisation of sub-
stitution and evaluation in the style of abstract machines. Slightly unfolding the
definitions, it is typed as follows.

Theorem ogs_correction {I'} 2 (x y : conf I)
: m_strat _ (inj_init_act (2 x) =~ m_strat _ (inj_init_act (2 y)
-> forall v : I' =[vall> 2, eval, (x :® ) = eval, (y :® 7).

© The Author(s) 2025
V. Vafeiadis (Ed.): ESOP 2025, LNCS 15694, pp. 200205, 2025.
https://doi.org/10.1007/978-3-031-91118-7 _8


https://doi.org/10.5281/zenodo.14697618
https://doi.org/10.5281/zenodo.14697618
https://lapin0t.github.io/ogs/esop25/Readme.html
https://doi.org/10.1007/978-3-031-91118-7_8
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-91118-7_8&domain=pdf

Artifact Report on an Abstract Account of Operational Game Semantics 201

In plain words, for any final scope {2 and language machine configurations x and
y, whenever the two OGS strategies obtained by embedding x and y into initial
strategy states are weakly bisimilar, then, for any assignment -, substituting x
and y by v and evaluating them to a final observation yields two weakly bisimilar
computations. In other words, either both substituted configurations diverge or
both return the same final result.

Language Machine Instantiation Several example language machines satis-
fying the OGS soundness hypotheses are provided in the Examples/ folder. In-
stantiating our generic semantics and proof with one’s favorite language always
follows the same blueprint. First, define the standard syntax and substitution.
Then, because the language evaluator must be presented as an abstract machine,
define a family of configurations for this machine. Note that this abstract ma-
chine must reduce open configurations and these must also support substitution.
For some languages such as pji-calculus [4], or say, Jump-With-Argument [10],
configurations are already a standard notion, but for others such as A-calculi,
they are generally obtained by pairing a term with an evaluation context. Fur-
ther, define the observation structure. This amounts to deciding which part of
normal form configurations should be considered observable for the purpose of
observational equivalence testing, and which part should be considered as a set
of opaque wvalues. Finally, when all these choices are made and the evaluator
written, it suffices to check the theorem hypotheses. In our experience, they are
always proven quite directly, without any surprising lemma required.

2 Inside the Beast: Implementation Details of Interest

We detail two salient aspects of our development. First, we have implemented
strategies as shallow monadic computations, which led us to develop an indexed
variant of the Interaction Tree (ITree) structure. Second, we have followed a
well-scoped approach, relying on the Equation library and the SProp universe.
This section is intended for expert readers familiar with the companion paper.

2.1 Strategies as Indexed Interaction Trees

Indexed Interaction Trees Library Rather than specifying labelled tran-
sition systems relationally in Prop, we have chosen a shallow Coq embedding
for implementing strategies, understood as possibly non-terminating computa-
tions featuring uninterpreted actions (move exchanges). This suggests reusing
the ITrees [18] library, which is designed for this purpose. It is also in line with
Hancock and Hyvernat’s similar construction of interaction structures [9], which
represent agents in client-server protocols as coinductive trees.

However, the ITree format for specifying possible actions is not expressive
enough for our purposes. In essence, it only captures games where the set of
allowed client moves is constant throughout. To fix this, instead of describing
possible actions by a polynomial functor on Set, we describe them by an indezed



202 P. Borthelle et al.

polynomial functor on Set!, for some set I representing active game positions.
The ITree/ folder thus contains a succinct port of the ITree library to this new
indexed setting. This part of the artifact could certainly be useful independently
of the OGS construction. We hope to extract it into a self-contained library.
This small library contains the coinductive definition of ITrees, their monadic
structure, and the standard iteration operator. We provide definitions for weak
and strong bisimilarity, together with the main reasoning principles: strong
bisimulation up-to equivalence, and weak and strong bisimulation up-to monadic
bind. Both bisimilarity relations are defined using the Coinduction [14] library,
which provides enhanced coinduction principles based on a lattice-theoretic fixed
point construction.® This relies on the impredicativity of the Prop universe.

Eventually Guarded Iteration Apart from indexing, the main novelty is a
pair of new iteration operators, respectively for guarded and eventually guarded
iteration (Prop. 5). They have been crucial in our OGS soundness proof and
could certainly be backported to the unindexed ITree library.

The standard unguarded operator can iterate any “loop body”, but it must
insert a silent step after each iteration to be well-defined. Hence, it only produces
a fixed point of the loop body w.r.t. weak bisimilarity, and it is in general not
unique. By contrast, our two new operators do not insert any silent step after
iteration, and produce unique fixed points w.r.t. strong bisimilarity. For this to
work, they respectively require the loop body to feature a guard (a computation
step) at each iteration or infinitely often, i.e., after a finite number of iterations.

Theoretically, unguarded iteration can be axiomatised as a complete Elgot
monad structure [7] on ITrees quotiented by weak bisimilarity, while our new
guarded iteration operators yield two completely iterative monad structures with
different notions of guardedness on ITrees quotiented by strong bisimilarity [8].

Relationship with Transition Systems over Games Following Levy and
Staton [11], in the paper (Def. 19), we define strategies over some game G: Game I.J
as a pair of active and waiting state families ST : Set! and S~ : Set”, together
with action and reaction morphisms. This data is dubbed by Levy and Staton a
big-step system over G and can be more succinctly expressed as a coalgebra for
the following endofunctor on Set! x Set”.

(ST,87) + (D(finalg + [clientg]"S™), [serverg] ST)

Instead of working with arbitrary coalgebras, we can equivalently see strategies
as their image in the final coalgebra, whose states consist of coinductive trees.
We do not construct this final coalgebra directly, but instead express it using our
indexed interaction tree datatype. Given a polynomial endofunctor X on Set’
and an output family X, indexed interaction trees are given by the following
final coalgebra:® itreex(X) = vS. X + S+ X(9).

5 Coinduction recently upgraded from the companion to a tower induction construc-
tion [15]. We have not made this port yet, and hence compile against Coq (8.17).

5 Note that this is exactly the same construction as given by Xia et al. [18], simply
taking place in the category Set! instead of Set.



Artifact Report on an Abstract Account of Operational Game Semantics 203

The trick is to focus on strategies in some active position, by considering the
sequence of choosing a client move and waiting for the next server move as one
unit. Indeed, the composition [clientg]™ o [serverg]™ is a polynomial functor,
and states of the final coalgebra of strategies over G may be computed as:”

strat'g" ‘= itree([ciientg]+ofserverg]—)finalg

stratg = [serverg] stratf.

Our implementation choices are then straightforward. We encode polynomial
endofunctors on Set’ as indexed containers [2], which we dub events.

Record event (I : Type) := Event {
e_qry : I -> Type ;
e_rsp : forall i, e_qry i -> Type ;
e_nxt : forall i (q : e_qry i), e_rsp i q -> I }.

For some indexed container E : event I and output family X : I -> Type,
the interaction tree endofunctor and its final coalgebra are respectively:

Variant itreeF (REC : I -> Type) (i : I) :=

| RetF (r : X i)

| TauF (t : REC i)

| VisF (q : E.(e_qry) i) (k : forall r : E.(e_rsp) q, REC (E.(e_nxt) r)).
CoInductive itree (i : I) := go { observe : itreeF itree i }.

2.2 Scope Structures

Our development of intrinsically-typed-and-scoped syntax largely follows stan-
dard practice [6,1]. As this mechanisation style is heavy on dependent pattern
matching, we make great use of the Equations plugin [16]. A notable novelty is
that we abstract over the concrete representation of scopes and variables, which
are usually fixed to lists of object language types and well-typed de Bruijn in-
dices. Our motivation was pragmatic: using tailor-made variable representations
drastically reduced the amount of boilerplate in complex pjfi-calculi instances.

The root cause is that most standard OGS examples involve separating ob-
ject language types into so-called positive and negative classes, with only vari-
ables of negative types being shared and observed between OGS players. Given
a strict predicate is_neg : ty -> SProp, negative types can be constructed
as the strict subset { t : ty | is_neg t }. The prime benefit is that defini-
tional equality of negative types is exactly definitional equality of the underlying
“vanilla” types. For scopes containing only negative types, we lose this nice prop-
erty if we represent them naively as 1ist { t : ty | is_neg t }. It is vastly
more convenient to work with the subset { ts : 1list ty | allS is_neg ts 1,
where allS denotes the strict universal quantifier on lists.

" We do not formally prove it computes the announced final coalgebra, but this can be
shown by straightforward fixed point calculation, recalling that D(X) = vA.X + A.



204 P. Borthelle et al.

To allow for such “non-standard” scope representations and their custom
notion of well-typed variable, we devise a notion of scope structure, close in
spirit to the Nameless, Painless approach [13]. A scope structure on S: Set
for object language types T consists of an element @: S, a binary operation
@®:S - S — S and a family of variables 3: S — Set”, equipped with two
isomorphisms @ 3t~ L and (I’ A) >t~ (' >t)W (A > t). The category
of contexts is then taken to be the full image of 3. In other words, objects are
elements of S and renamings I' — A are given by functions Vt,I"' >t — A > t.
This interface can then be instantiated both by lists and de Bruijn indices as well
as by our “subset scopes”. The substitution metatheory is left mostly unchanged.

References

1. Allais, G., Atkey, R., Chapman, J., McBride, C., McKinna, J.: A type and scope
safe universe of syntaxes with binding: their semantics and proofs. Proc. ACM
Program. Lang. 2(ICFP), 1-30 (Jul 2018). https://doi.org/10.1145/3236785

2. Altenkirch, T., Ghani, N., Hancock, P.G., McBride, C., Morris, P.: Indexed contain-
ers. J. Funct. Program. 25 (2015). https://doi.org/10.1017/S095679681500009X

3. Borthelle, P., Hirschowitz, T., Jaber, G., Zakowski, Y.: An abstract, certified ac-
count of operational game semantics. In: ESOP (2025)

4. Curien, P., Herbelin, H.: The duality of computation. In: ICFP. pp. 233-243. ACM
(2000). https://doi.org/10.1145/351240.351262

5. Downen, P., Ariola, Z.M.: Compiling with classical connectives. Log. Methods
Comput. Sci. 16(3) (2020). https://doi.org/10.23638/LMCS-16(3:13)2020

6. Fiore, M., Szamozvancev, D.: Formal metatheory of second-order abstract syntax.
Proc. ACM Program. Lang. 6(POPL), 1-29 (2022). https://doi.org/10.1145/
3498715

7. Goncharov, S., Milius, S., Rauch, C.: Complete elgot monads and coalgebraic re-
sumptions. In: MFPS. Electron. Note Theor. Comput. Sci., vol. 325, pp. 147-168.
Elsevier (2016). https://doi.org/10.1016/J.ENTCS.2016.09.036

8. Goncharov, S., Schréder, L., Rauch, C., Pirég, M.: Guarded and unguarded iter-
ation for generalized processes. Log. Methods Comput. Sci. 15(3) (2019). https:
//doi.org/10.23638/LMCS-15(3:1)2019

9. Hancock, P., Hyvernat, P.: Programming interfaces and basic topology. Ann. Pure
Appl. Log. 137(1-3), 189-239 (2006). https://doi.org/10.1016/J.APAL.2005.
05.022

10. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semant.
Struct. Comput., vol. 2. Springer (2004)

11. Levy, P.B., Staton, S.: Transition systems over games. In: LICS. pp. 64:1-64:10.
ACM (2014). https://doi.org/10.1145/2603088.2603150

12. Pit-Claudel, C.: Untangling mechanized proofs. In: SLE. pp. 155—174. ACM
(2020). https://doi.org/10.1145/3426425.3426940

13. Pouillard, N.: Nameless, painless. In: ICFP. pp. 320-332. ACM (2011). https:
//doi.org/10.1145/2034773.2034817

14. Pous, D.: Coinduction all the way up. In: LICS. pp. 307-316. ACM (2016). https:
//doi.org/10.1145/2933575.2934564

15. Schéfer, S., Smolka, G.: Tower induction and up-to techniques for CCS with fixed
points. In: RAMICS. Lect. Note Comput. Sci., vol. 10226, pp. 274-289 (2017).
https://doi.org/10.1007/978-3-319-57418-9_17


https://doi.org/10.1145/3236785
https://doi.org/10.1145/3236785
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://doi.org/10.23638/LMCS-16(3:13)2020
https://doi.org/10.23638/LMCS-16(3:13)2020
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1145/3498715
https://doi.org/10.1016/J.ENTCS.2016.09.036
https://doi.org/10.1016/J.ENTCS.2016.09.036
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.23638/LMCS-15(3:1)2019
https://doi.org/10.1016/J.APAL.2005.05.022
https://doi.org/10.1016/J.APAL.2005.05.022
https://doi.org/10.1016/J.APAL.2005.05.022
https://doi.org/10.1016/J.APAL.2005.05.022
https://doi.org/10.1145/2603088.2603150
https://doi.org/10.1145/2603088.2603150
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2034773.2034817
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1007/978-3-319-57418-9\_17
https://doi.org/10.1007/978-3-319-57418-9_17

Artifact Report on an Abstract Account of Operational Game Semantics 205

16. Sozeau, M., Mangin, C.: Equations reloaded: high-level dependently-typed func-
tional programming and proving in coq. Proc. ACM Program. Lang. 3(ICFP),
86:1-86:29 (2019). https://doi.org/10.1145/3341690

17. Streicher, T.: Investigations into intensional type theory. Habilitiation Thesis, Lud-
wig Maximilian Universitat (1993)

18. Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B.C., Zdancewic, S.:
Interaction trees: representing recursive and impure programs in coq. Proc. ACM
Program. Lang. 4(POPL), 51:1-51:32 (2020). https://doi.org/10.1145/3371119

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1145/3341690
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
http://creativecommons.org/licenses/by/4.0/

	Artifact Report: an Abstract, Certified Account of Operational Game Semantics



