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Abstract

In this thesis we construct an operational game semantics (OGs) model entirely formally in the language of type
theory, and prove it correct w.r.t. observational equivalence. These results are implemented in a RocqQ code artifact.
The Ocs model construction and correctness proof are generic over an axiomatized programming language and
its evaluator. The axiomatization in the style of abstract machines handles simply-typed languages with arbitrary
control-flow effects (non-termination, call/cc), of which we provide three examples: Jump-with-Argument, polarized
ufi-calculus with recursive types, and pure untyped call-by-name A-calculus under weak head reduction. The Ogs
model construction builds upon a notion of game by LEVY and STATON, and strategies are represented coinductively
by generalizing X1a et al.‘s interaction tree from containers to indexed containers. We further introduce a novel
unique fixed point construction for eventually guarded equation systems on (indexed) interaction trees, as well as a
generic normal form bisimulation model construction and its correctness proof.

Résumé

Cette these construit un modele de sémantique des jeux opérationelle (OGs) de maniére entierement formelle dans
le langage de la théorie des types, et prouve sa correction vis-a-vis de 'équivalence observationelle. Ces résultats sont
mécanisés avec I'assistant de preuve RocqQ. La construction du modele d’Ogs et sa correction sont génériques par
rapport 4 un langage de programmation axiomatisé et 4 son évaluateur. Laxiomatisation dans le style des machines
abstraites capture les langages simplement typés avec effets de controdle arbitraires (non-terminaison, call/cc), et nous
en présentons trois exemple: Jump-with-Argument, wfi-calcul polarisé avec types récursifs, et A-calcul pur non-typé
en réduction de téte faible. La construction du modele d’OGs se base sur une notion de jeu de LEVY et STATON,
et les stratégies sont représentées coinductivement en généralisant la définition d’arbre d’intéraction de X1a ez al.
aux conteneurs indexés. Nous introduisons également une nouvelle construction de point fixe pour les systemes

¥équations ultimement gardés sur les arbres d’intéraction (indexés), ainsi qu’une construction générique d’un
modele de bisimulation de forme normale et sa preuve de correction.
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Introduction

1.1 Interactive Semantics: Context and Motivations

This thesis sets itself in the field of programming language semantics, whose
central question, “What is the meaning of this program?”, is an essential premise
to any mathematical study of programs and programming languages. As it
happens, most mainstream programming languages are large and complex beasts,
comprising a number of intertwined features and subtle interactions with their
underlying runtime system. Programs are thus far removed from the more neatly
described traditional objects of mathematical interest such as say numbers or
vector spaces. Paradoxically, although programs are purely formal constructs, this
complexity gives to the study of their semantics the feel of a natural science, where
mathematical models are built to capture an ever increasing level of detail. For
sure, a handful of languages do admit truly exhaustive semantic descriptions, but
this arguably only ever happens when they are designed with this intent (e.g.,
Standard ML [84] or WEBAsSSEMBLY [41]). Even for programming languages
strongly rooted in the theoretical computer science community and routinely
used by semanticists, such as proof assistants like AGpa [9] or CoqQ [28], a
perfect description is elusive*! Yet, this predicament never stopped anyone from
programming, nor simplified semantics from being useful. The value of a mathe-
matical model does not reside in its faithfulness to reality with all its gruesome

details, but in its ability to ease reasoning about a particular aspect of interest.

In this thesis, the focus of attention begins with the following question: When
can two program fragments be considered equivalent? The motivation for
studying program fragments—i.e., code snippets, modules, individual functions,
etc.—is of practical nature. It can be abstractly argued that approaching large
programs is most easily done by cutting them into smaller parts to be studied
independently. But to a greater degree, programs are written modularly in the
first place. Programming languages live and die by the means they provide to
organize abstractions and interfaces. Organizing bits and pieces is perhaps the
primary task of the programmer. As such, studying equivalence will be our first
step towards giving a mathematical meaning to program fragments. This proves
to be sufficient for a variety of tasks such as justifying correctness by comparison
to a reference implementation, or verifying optimizations and simplifications, in

particular in the context of compilation—the art of translating programs.

[84] David MacQueen, Mads Tofte Robin
Milner Robert Harper, The Definition of
Standard ML, 1997.

[41] WebAssembly Working Group, “Web-
Assembly Specification.”

[9] Acpa Developers, “AGpa.”

[28] The CoQ Development Team, “The
CoQ Proof Assistant,” 2024.

* To be completely honest, in the case of
CoqQ kernel, the METACOQ [72] project is
increasingly close to the ground truth.
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[74] James H. Morris, “Lambda-calculus
models of programming languages,” 1968.

The most important definition for equivalence of program fragments is due
to MORRIS [74]: observational (or contextual) equivalence. It builds upon the
notion of context, thatis, an incomplete program with a hole, a missing part clearly
marked as such. Primarily, a context can be combined with a program fragment by
replacing the marked hole with the fitting fragment, yielding a complete program.
Two program fragments a and b are then considered observationally equivalent,
whenever for any context C' they might be combined with, the final results of the
combinations C[a] and C[b] will satisfy exactly the same basic observations. This
assumes given some sensible notion of “basic observation” on program results.
As the name suggests, observational equivalence characterizes program fragments
which cannot be distinguished in any way by programatically interacting with
them. It is in a precise sense the “best” (logically weakest) such notion. Observa-
tional equivalence is the gold standard, but also notoriously hard to work with
directly. Indeed, it is as much of a property on two program fragments, as a
statement on // the contexts they could fitin. As simple as the programs may be,
the intricacy of the possible contexts is without limit. In consequence, a fruitful
area of research has been to develop alternative characterizations of observational
equivalence, more intrinsically related to the programs at hand, with the hope of
being easier to establish in concrete cases. Among such eftorts, game semantics is

one particular strand of prime importance to us.

A core idea of game semantics is to abstract away the concrete nature of the
observing contexts and instead put the focus on the ways they would znteract with
a given program fragment. By keeping the inner working of the context opaque,
we can concentrate on what actually matters, that is, how it would affect our
program fragment. To set things straight, let us illustrate this idea with a short

example: assume our program fragment is the following function twice.
twice(f, x) := f(f(x))

A sample (polite) interaction with an otherwise unknown context might look

like this.

Program — You can ask me about twice.

Context — What is the output of twice(a, 10)? You can ask me about a.
Program — Well, first what is the output of a(10)?

Context — The output s 5.

Program — Still, what is the output of a(5)?

Context — Itis 3.

Program — Then the output you asked for is 3.

Different concrete contexts might generate this interaction with twice. For

example, several implementations of a would fit the bill of mapping 10 to 5
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and 5 to 3. However, any such context would only learn the same information
about our candidate fragment, namely that when called with such a function a
and the number 10, it will output 3. For the purpose of testing the behavior of
twice, we do not loose anything to conflate all these contexts. The precise rules
of such dialogues will be elucidated in due time, but for now let us return to our

exposition.

Under the light of interactions, a program fragment can be understood on its
own without any mention of contexts, as a blueprint or stzategy, describing how
to react to any possible action by the other party. Equivalence of such strategies
—reacting the same way to any action—can then serve as replacement for obser-
vational equivalence. Put more succinctly, game semantics is a family of models
in which program fragments are interpreted as strategies for restricted forms of
dialogues between them and the rest of the program. Although the rules of these
dialogues are called “games”, bear in mind that they are only tangentially related
to the games studied in game theory, e.g., they are devoid of any notion of reward.
This basic idea is quite flexible and suitable to model a wide range of program-
ming language features. In fact it originates as part of a wider interpretation not
of programs but of proofs, i.e., evidence in logical systems. GIRARD’s geometry of
interaction [38] has been particularly influential in this respect, but we will not try
to trace the game interpretation of logic down to its origins, since the connection
between logical proofs and argumentative dialogues is most likely as old as logic
itself.

Although it has been motivated as a practical tool for reasoning with observa-
tional equivalence, and although its flexibility has been demonstrated to apply toa
number of advanced programming language features, game semantics has not yet
truly gone out of the hands of the game semanticists and into the everyday toolkit
of the generalist programming language researcher. This can be contrasted,
e.g., with the framework of logical relations, also known as Tart’s method of
computability [90], which has overlapping use cases [34] and which enjoys a very
large number of introductory material, tutorials and other proof walk-through.
While game semantics is relatively lively as a research area, it has seen comparably
little activity in digesting existing methods, streamlining proofs and definitions,
and making them technically approachable to a wider community. This thesis is

no tutorial, but we will keep this motivation in the back of the mind.

More concretely, the goal of this thesis is to reconstruct from the ground up a
particular flavor of dialog models, operational game semantics (OGs), and prove
that equivalence of strategies entails observational equivalence. We do not build
it for a precise programming language, but instead target a generic construction,
readily applicable to several languages. This generality is not for the sake of it, but
practically guided by getting to the core of the construction and separating it from

[38] Jean-Yves Girard, “Geometry of Inter-
action 1: Interpretation of System F,” 1989.

[90] William W. Tait, “Intensional Inter-
pretations of Functionals of Finite Type I,”
1967.

[34] Derek Dreyer, Georg Neis, and Lars
Birkedal, “The impact of higher-order state
and control effects on local relational rea-

soning,” 2012.
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[42] Kurt Gédel, “Uber formal unentschei-
dbare Sitze der Principia Mathematica und
verwandter Systeme I,” 1931.

[25] Alonzo Church, “An Unsolvable
Problem of Elementary Number Theory,”
1936.

[92] Alan M. Turing, “On Computable
Numbers, with an Application to the
Entscheidungsproblem,” 1937.

[28] The CoQ Development Team, “The
CoQ Proof Assistant,” 2024.

the technicalities pertaining to the given language. We do so fully formally, in
the mathematical language of #ype theory common in computer-assisted proving.
Before jumping to the content we will provide a bit more details on operational
game semantics, but for now let us discuss some of the methodological underpin-

nings of computer-assisted proofs.

1.2 Programming Mathematics: How and Why?

For most people, the phrase “computer-assisted proof” usually evokes the idea
of a computer program, checking if some formula or some other kind of mathe-
matical problem is true or false. This kind of algorithm, known as solvers are
indeed useful in a number of situations, but several landmark results early in
the 20 century have shown that this can very quickly become unfeasible. First,
GODEL [42] showed that for any logical system, as soon as some moderate level of
expressivity is attained, there are some statements which are neither provable nor
disprovable. Quickly thereafter, CHURCH [25] and TURING [92] independently
showed that there are some tasks which no program can solve, i.e., functions
that we can specify but not compute. Hence, the “computer assistance” we make
use of in this thesis is of another kind. Instead of asking for a program to come
up with the proofs, we write them ourselves in a purpose designed language.
A program understanding this language then helps us both during the writing,
e.g., by providing information about the ongoing proof, and at the end, when it

checks that the proofs we have written are correct and missing no argument.

There are a number of such systems, but the one we have used in the code artifact
accompanying this thesis is CoQ_[28] (henceforth the RocQ Prover, as it is in
the process of being renamed). It is part of a wider family of systems which we
will simply call ¢ype theories and whose distinguishing characteristic is that they
are in fact programming languages, although perhaps of a slightly peculiar kind.
To explain this fact and its importance in our approach to proving mathematical

theorems, we need to take a slight step back.

The beginning of this happy coincidence joining logic and programming started
when, still in the early 20 century, some mathematicians started insisting that
to consider proven the existence of some mathematical object satisfying some
property, one must actually pinpoint it precisely. In other words, we need to
provide a concrete way to construct it, so that it is not sufficient to merely show
that it is impossible for it not to exist, without saying anything about its shape.
In this zntuitionistic or constructive school of thought, the idea emerged that to
any such intuitionistic proof can be associated a concrete witness or realizer, the
so-called BROUWER-HEYTING-KOLMOGOROV interpretation. Programs turned

out to be quite suitable for expressing such realizers, in particular the A-calculus
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put forward by CHURCH [51][52], establishing a link between proofs and pro-
grams. The bridge between these two worlds is however quite deeper, as around
that time and onward, a string of observations have been made. They essentially
understood, that with a very moderate amount of squinting, the linguistic rules
of existing formal logical systems were actually the same as the rules of existing
programming languages. Although not an actual theorem, this has been extrap-
olated to a guiding principle, or methodological posture, the CURRY-HOWARD
correspondence, asserting that logical systems and proofs on one hand, and
programming languages and programs on the other, are the two sides of the same

coin.

This correspondence sparked a particularly fruitful activity in logic and theoret-
ical computer science, namely taking a concept from one side and looking at it
from the other side. We can now study the behavior of a proof when executed,
compare the computational complexity of two proofs of the same statement,
search for the statement(s) that a given algorithm proves, and much more! Type
theories such as Rocq embody this correspondence, so that we are truly both
programming and proving at the same time. I personally believe that this opens
up a radically new perspective both on programming and on mathematical
practice of which I outline three important aspects.

A first aspect, relevant to the programmer, is that of correct-by-construction
programming, or type-driven development [16][22], whereby a program is its
own proof of correctness. Tjpes, akin to syntactic categories, classify programs
and they are the counterpart of the logical propositions, or statements, in the
programming world. Most programmers are probably familiar with some types,
such as booleans, byte arrays, functions from some type A to some type B,
records, etc. In type theories such as Rocq, these types are now able to express
a number of powerful logical constructions. Instead of writing a program and
then tediously proving that it is correct w.r.t. some specification, we can thus
write that specification as a type, write the program, and then simply typecheck
it, .e., ask the system to check that our program has the given type, in other words
that it verifies the corresponding specification. This is no magic bullet: if there
are non-trivial arguments to be had as to why the program corresponds to the
specification, they will now be required to be put alongside it. Still, a number of
invariants can be pushed into programs and data structures in this way, so thata
host of basic properties are tracked and enforced effortlessly by the language itself.
We use this idiom extensively throughout our Rocq development.

A second aspect is relevant to the mathematician. As we stated earlier, program-
mers, with the support of computer science, have become quite good at organiz-
ing code modularly, a necessity to ensure ease of use, maintainability, extensibility,
etc. This experience learned the hard way by managing large bodies of formal

[51] Stephen C. Kleene, “On the interpre-
tation of intuitionistic number theory,”
1945.

[52] Georg Kreisel, “Interpretation of
Analysis by Means of Constructive Func-
tionals of Finite Types,” 1959.

[16] Thorsten Altenkirch, Conor McBride,
and James McKinna, “Why Dependent
Types Matter,” 2005.
[22] Edwin Brady, Type-Driven Develop-
ment with Idris, 2017.
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constructs can now be pulled across the CURRY-HOWARD correspondence and
leveraged to organize mathematical concepts. In some respect, mathematicians
have also been preoccupied by properly organizing concepts, however, we dare
to say that this has been a rather organic task, mostly left to aesthetic judgment
and to time. By inflicting upon oneself the rigor of entirely formal reasoning as
is done when using proof assistants, there is no other way than to rationalize
the concepts down to their core. When programming, nothing can be “left for
the reader”, which is the gentleman’s agreement providing an escape hatch for
uninteresting and tedious mathematical writing. Such untold details are usually
self-evident for trained mathematicians with a good mental representation of the
objects in question, as indeed, the problem is only formal. When programming,
the similar phenomenon of “boilerplate” or “glue code”, is usually caused by
improper data representations or missing abstractions and it can be resolved by
refactoring. As such, formalization can encourage mathematicians to question
the presentational status quo, and provide sound criteria for judging the suitabil-

ity of abstractions.

A third aspect concerns accessibility. Programming is quite notable for its number
of self-taught practitioners, sometimes of very young age or otherwise well
outside of the intended public. While we do not pretend to explain this fact, we
believe that two points must be part of the picture. First, explicitness. Although as
semanticists we can regret some imperfections, programming languages are usu-
ally thoroughly documented in plain words, with large manuals describing every
element of the syntax and their meaning. As each and every program is entirely
described by this syntax, one does not need to know the theoretical background
of some algorithm to decipher its atomic operations. Instead programs can be
reverse-engineered, starting from a purely superficial formal understanding. Al-
though the learning curve may be steep, extremely little background knowledge is
required: most things are built from the ground up and can be inspected. Second,
interactivity. Computers turn programs into a reality which can be poked at
and experimented with simply by running them and testing their behavior. The
process of programming itself is interactive: at the very least one can always try
to execute the program, it will either run or produce an error, reporting what
went wrong. In practice, advances in code editors and other tooling have made
the process of writing code vastly more supportive. This interactivity enables
ingenuous trial-and-error, and removes the requirement of having a knowledge-
able person around for pointing out errors. All in all, there is no reason to
believe that mathematics and computer science are better or worse than any other
academic discipline with respect to gatekeeping. Yet a large amount of crucial
knowledge is hidden behind unspoken conventions, behind a number of little
ambiguities that the reader is assumed to resolve, or inside a sea of publications
that requires a full time job and a dedicated mentor to navigate. By building upon
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programming languages, which are executable and clearly specified, the bar to
start understanding and producing meaningful mathematics can be enormously
lowered. In fact, we can already observe several substantial contributions by
students and non-professional mathematicians, in particular using type theory
implementations such as AGpa [9] or LEAN [75] whose syntax is quite close to

mainstream programming languages.

With the frame of discourse now set, let us jump back to operational game
semantics and provide some technical grounding for the rest of this thesis. From

this point on, we will start assuming some familiarity with the A-calculus.

1.3 A Primer to Operational Game Semantics

To set some intuitions about operational game semantics and to introduce some
design choices that will follow us throughout the thesis, let us start by describing
its rules and the obtained strategies in the case of a very simple programming
language: simply-typed A-calculus with recursive functions and booleans. We
recall its syntax, typing, and operational semantics in Figure 1.1.

1.3.1 First Steps

Our presentation will more or less follow LAIRD [54], keeping only what is
required for our simple example language. The game goes as follows: the two
players, unoriginally named “client” and “server”, exchange function symbols
such as twice and a from the previous example, but whose associated definition
they do not disclose to each other. These symbols are introduced in two possible
ways: by calling a previously introduced symbol or by returning a value following
a previous call. When calling, if the argument is a boolean it is passed as-is,
but in case it is a function, a fresh symbol is introduced in its place. Similarly
when returning, booleans are given explicitly but functions are again hidden and
shared as a new symbol. This syntactic category consisting of true, false and fresh
function variables can be recognized as patterns. Together with moves they are
defined as follows.

Pattern > Z =z | tt | ff
Move > M == ret(Z) | Call(x,Z)

Remark 1.1: Assuming some existing symbol = : (A — B) — C, the move
call(z,y) should really be understood as binding the symbol y : A — B for
the other player for the rest of the play, which is moreover asserted fresh. Itis a

location, while z on the other hand is a posnter.

[9] AGpa Developers, “AGDA.”
[75] Leonardo de Moura and Sebastian
Ullrich, “The Lean 4 Theorem Prover and
Programming Language,” 2021.

[54] James Laird, “A Fully Abstract Trace
Semantics for General References,” 2007.
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1.3.1 First Steps

Note that what we call “symbols” in the context of the game are technically
plain and simple variables. The name is a reference to the “program symbols”
as appear in shared library object files.

The interpretation of terms as strategies is conceptually very simple. First, we
evaluate the term to its normal form. If this does not terminate, the strategy never
plays. If we find a normal form, it can be of two shapes: either a value V or a
term E[z V] stuck on a symbol z introduced by the server. In the first case we
play ret(Z) and in the second call(z, Z), where Z is, depending on the type
of V, either a fresh function symbol or the boolean V. Upon playing this move,
we remember everything that we have not put into the move, that is, possibly
the evaluation context E and the function associated to the fresh symbol. Then,
to react to moves, if the server plays ret(Z), we find our last stored evaluation
context E and restart our strategy as above with E[Z]. If the server instead plays
call(z, Z), we look up the value V associated to = and restart with V Z.

To make this more precise we need to know how to represent strategies, and this is
an important specificity distinguishing OGs from a lot of other game semantical
models. In OgGs, these are described quite concretely by mean of an automaton,
or transition system, that is, by giving a set of states and a transition relation.

More precisely, because a strategy needs to both play moves and respond to server

Syntax
Value > V, W =z | tt | ff ‘ AreCf71:.P
Term >P,Q =V | PQ
Eval. Cont. D E,F =0 | EV | PE
Reduction

(Ae<f,z.P)V ~» Plf (A<f,z.P),z V]
E[P] -~ E[Q] whenever P 2 Q

Typing
Type 2 A,B == A — B | bool
Scope 5T, Au=¢ |T,z: A

I'sz: A
T'kFz: A T'F tt: bool I' - ff: bool
If:A—Bz: A-P:B 'rP:A—-B THQ:A
Tk AefxP:A— B 'HPQ:B

Figure 1.1 - STLC Syntax and Semantics



moves, there will be two sets of states and two transition relations, respectively
for active positions and passive positions. We adopt the point of view of the client,
so that active positions are the ones where we need to play a move, while passive

positions are the ones in which we are waiting for the server to play.

For our OGs strategy, an active state consists of a term P being evaluated, and the
data that we need to remember: a stack of evaluation contexts S and an environ-
ment of function values . Passive states only contain the evaluation stack and
the environment. We write them respectively as act(P, S, ) and pas(S, ).
Before giving the transitions, let us make precise the abstraction procedure, which
hides function expressions from values. It takes a type and a value of that type
and returns a pattern, together with a f2/ling, i.e., an environment containing the

value which may have been abstracted.

abstrg_,7(V) := (z,{x = V}) with z afresh symbol
absrrbool(v) : (V7 {})

The transitions are given by relations between states, labeled by the move M

which is played or received. The active and passive transitions are given as follows.

ret(Z) whenever P ~»* V and
act(P, S,’y) —_— pas(S,’yL‘rJ(S) (Z,6) := abstr(V)
call(z,Z) whenever P »* E[zV]and

act(P, S, ’Y) —_—— pas(S::E, YW (5) (Z,6) := abstr(V)

ret(Z)
pas(S:E,y) ——— act(E[Z],S,7)
call(z,Z)
pas(S,~) — act(VZ,5,) when (z = V) € v

A term P can now be interpreted as a strategy by embedding it as the initial
active state act(P, €, {}). Then, strategies are considered equivalent when they
are bisimilar. As the transition is deterministic, this essentially means that they
have the same set of #7aces, that is, the same infinite sequences of moves obtained
by unfolding any possible transition starting from the initial state. The primary
task to make sure the model is sensible is to prove that for the above given strategy,
when two terms are bisimilar, then they are observationally equivalent—a state-

ment called correctness, or soundness of OGs w.r.t. observational equivalence.

Although this game seems a priori relatively reasonable, before starting our formal
treatment in this thesis we will make a slight change of perspective. As a hint,
it is slightly bothering that our strategy requires two devices instead of one for
remembering what it needs to: a stack and an environment. The blocker for
putting evaluation contexts into the environment is that they are not named by

a symbol. Instead, they are always referred to implicitly, as e.g. in ret(Z) which

1.3.1 First Steps

9
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The AGpA programmer or pi-calculus afi-
cionado will surely be happy to recognize
“observations” as copatterns and “moves”

as postfix copattern applications.

can be read “return Z to the context at the top of the stack”, much like call(z, Z)
reads “send Z to the function pointed to by x”. This change of perspective thus
involves naming contexts with symbols, as functions are, and unify the return and

call moves into one: symbol observation.

1.3.2 More Symbols and Fewer Moves

We amend the game as follows. First, the exchanged symbols may now refer either
to functions or to evaluation contexts, which we will sometimes (but not always)
distinguish by writing them a, 3, etc. Next, as now both move kinds explicit the
symbol they are targeting, we will separate it more clearly from the arguments,
writing o - ret(Z) and z - call(Z, ). Note that function calling now has a
second argument ¢, binding the continuation symbol on which this call expects
areturn. They are precisely defined as follows.

Observation 3 O == ret(Z) | call(Z, a)
Move SM:=:=z-0

To adapt the OGs strategy to this new game, we do away with the context
stack, as was our motivation. In compensation, we now need to track explicitly
the “current context symbol”. The active states thus comprise a named program
(P || @), ie.apairofaprogramand a continuation symbol, and an environment
-~ mapping symbols to generalized values, that is, function symbols to function
values and context symbols to named contexts (E || o). The passive states now
simply consist of an environment. The transition system can be rewritten as
follows.

o - ret(Z) whenever P ~»* V and
act((P | @),7) === pas(Y¥3) (7§ _ duur(V)

z - call(Z,B) , whenever P «»* EzV],
aCt(<P ” Ol), 7) — pas('y Wé ) (Z,8) = abstr(V') and
5 =50 (B ] )}

a-ret(Z)

pas(y) =—= act((E[Z] | B),7)  when(am(E|f) ey
z - call(Z,p)

pas(y) =———— act({VZ | B),7) when (z - V) €y

To put the final blow, let us fuse the definition of the return and call moves, for
active transitions and passive transitions. For the active transitions, notice that
in essence, what is happening is that the named program is reduced to a named
normal form, which is subsequently split into three parts: the head symbol, an

observation on it with more or less opaque arguments, and a small environment
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storing the value of anything that has been hidden. Let us define this splitting as
follows, where as usual we make use of (Z, y) := abstr(V).

Pt (V [ a) o= (a-ret(2),7)

split (E[zV] || @) := (z - call(Z, 8),yW {8 (E | a)})

Our active transition now satisfyingly reads as follows.

whenever P 2»* N and

z-0
act({P | a),y) =———= pas(yWJ) (z-0,6) = split (N | )

To unify the two passive transitions, what we are missing is a generalized “obser-
vation application” operator ©, which would subsume both context filling and
function application. Define it as follows.

(B | a)oret(Z) :=(E[Z]|®)

v Ocall(Z,a)={VZ | a)

The passive transition can now be recovered quite simply, and we reproduce the

whole transition system one last time in its final form.

z-0 when P »* N and
aCt(<P ” Ol), 7) = pas(’y W 6) (z-0,0) = split (N | o

z- O
pas(7) ——— act(X00,y) when(zrX)enq

The path to generalize the OGs construction to other languages is now ready:
we will abstract over the notions of named term, generalized values, observa-
tions, normal form splitting and observation application. Notice how both the
function call with explicit continuation as well as the named term construction
(P || e) are reminiscent of abstract machines based presentations of a language’s
operational semantics. In this sense, in our personal opinion, Ogs is first and
foremost a construction on an abstract machine, and not on a “programming
language”. This point of view will guide us during the axiomatization, as we will
indeed entirely forget about bare terms and evaluation contexts, keeping only
configurations (e.g. named terms) and generalized values. On top of streamlining
the Ogs, letting go of contexts will also greatly simplify the necessary syntactic
metatheory, as these “programs with a hole” are perhaps fun, but certainly not
easy [1][67][45]. Yet as we have just seen, this does not preclude to treating
languages given by more traditional small- or big-step operational semantics.

As it happens, this new game with explicit return pointers is common in OGs
constructions for languages with first-class continuations [58] [48]. However, we
stress that even for languages without such control operators, as in our A-calculus,

it is an important tool to streamline the system.

[1] Michael G. Abbott, Thorsten Al
tenkirch, Neil Ghani, and Conor McBride,
“Derivatives of Containers,” 2003.

[67] Conor McBride, “Clowns to the Left
of me, Jokers to the Right,” 2008.

[45] Tom Hirschowitz and Ambroise La-
font, “A unified treatment of structural
definitions on syntax for capture-avoiding
substitution, context application, named
substitution, partial differentiation, and so
on,” 2022.

[58] Seren B. Lassen and Paul Blain
Levy, “Typed Normal Form Bisimulation,”
2007.

[48] Guilhem Jaber and Andrzej S. Mu-
rawski, “Compositional relational reason-

ing via operational game semantics,” 2021.
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[62] Paul Blain Levy and Sam Staton,
“Transition systems over games,” 2014.
[93] Li-yao Xia, Yannick Zakowski, Paul
He, Chung-Kil Hur, Gregory Malecha,
Benjamin C. Pierce, and Steve Zdancewic,
“Interaction trees: representing recursive
and impure programs in CoQ,” 2020.

[81] Damien Pous, “Coinduction All the
Way Up,” 2016.

[86] Steven Schifer and Gert Smolka,
“Tower Induction and Up-to Techniques
for CCS with Fixed Points,” 2017.

[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.

[13] Guillaume Allais, Robert Atkey, James
Chapman, Conor McBride, and James
McKinna, “A type- and scope-safe universe
of syntaxes with binding: their semantics
and proofs,” 2021.

[44] André Hirschowitz and Marco Mag-
gesi, “Modules over monads and initial
semantics,” 2010.

[3] Andreas Abel, Brigitte Pientka, David
Thibodeau, and Anton Setzer, “Copat-
terns: programming infinite structures by
observations,” 2013.

[66] Ian A. Mason and Carolyn L. Talcott,
“Equivalence in Functional Languages
with Effects,” 1991.

Let us now expose how this thesis will unfold.

1.4 Contributions

The broad goal of this thesis is to formally implement the OGs model in type
theory, and prove it correct w.r.t. observational equivalence. We do notdoso fora
particular concrete language, but instead formalize it on top of an axiomatization
of pure, simply-typed programming languages, for which we provide several
instances. This result, as well as most other constructions in this thesis have been
entirely proven in Rocq.

Games and Strategies in Type Theory  Inorder to represent dialogue games
and game strategies in type theory, we start off in Ch. 2 by reviewing a notion of
game by LEVY and STaTON [62]. We then generalize upon the construction of
interaction trees [93] and introduce indexed interaction trees, to represent game
strategies as finely typed coinductive automata. In order to reason on such strate-
gies, we show powerful reasoning principles for their strong and weak bisimilarity,
inside a framework for coinduction based on complete lattices [81][86]. Further,
we introduce a new notion of eventually guarded systems of recursive equations
on indexed interaction trees, which we prove to have existence and uniqueness of
fixed points w.r.t. strong bisimilarity.

Theory of Substitution  In Ch. 3, we lightly review the standard tools for
modeling intrinsically typed and scoped syntaxes with substitution [37][13]. To
fit our needs, we present the lesser known notion of substitution module [44] over
a substitution monoid, generalizing upon the theory of renaming. We further
introduce a novel notion of scope structures, generalizing upon the traditional De-
BrunyN indices. Although relatively superficial, scope structures provide us with

much appreciated flexibility in choosing how variables should look like.

Ogs Construction With all the necessary scaffolding in place, in Ch. 4
we define a generic OGs game, parametrized only by a notion of observation,
inspired by copatterns [3]. We then introduce langnage machines, axiomatizing
languages with open evaluators and derive from them a strategy for the Ocs
game, constructing the Os model. We then state and discuss the hypotheses for
correctness of equivalence in the model w.r.t. a variant of observational equiva-
lence and state the correctness theorem. A notable finding is the appearance of
a hypothesis which was never isolated in previous OGs correctness proofs, as for
most concrete languages it is a simple annoyance to deal with. The language-
generic setting, however, makes the requirement and its reason clear. Our variant
of observational equivalence, substitution equivalence, is an analogue of Cru

equivalence [66] tailored to our axiomatization of language machines.



Ogs Correctness We prove the correctness theorem in Ch. 5. After a
standard detour on game strategy composition, we provide a novel decomposi-
tion of the correctness proof into two main high-level components, isolating
the purely technical argument from the rest. First, a core semantical argument,
showing essentially that substitution is a fixed point of the recursive equations
defining composition. This part is relatively straightforward as it does not involve
coinduction but only a series a basic rewriting steps. Second, we show that
the composition equation is eventually guarded. This second part is the most
technical, but provides an isolated justification for concluding by uniqueness of

fixed points.

Normal Form Bisimulations  Normal form (NF) bisimulations are a notion
of program equivalence closely related to the OGs model. Their game is much
more restricted, so that it is typically easier to prove two concrete programs
normal form bisimilar than OGs model equivalent. In Ch. 6, we construct the Nr
game and the NF model parametrized, as OGs, by observations and a language
machine. As a first application of the OGs correctness theorem, we prove that N
bisimilarity is correct by showing that the OGs interpretation factors through the
NFF interpretation.

Language Machine Instances  To demonstrate the viability of our axioma-
tization of language machines, in Ch. 7 we provide three examples forming a
cross section of what can be expressed. For each of them, we define a language
machine and prove the correctness theorem hypotheses. First, we study Jump-
with-Argument, a minimalistic continuation passing style calculus [60]. Then,
we study wfi-calculus with recursive types [30][33], a very expressive language
with explicit control flow. Similarly to Call-by-Push-Value [60], it has been exhib-
ited as a fine compilation target, so that this instance also implicitly captures all
the calculi which can be compiled to pii-calculus. Finally, we study a more tradi-
tional calculus, untyped A-calculus under weak head reduction. In this case, it is
known that NF bisimulation specializes to LEvY-LoNGo tree equivalence [55],

thus providing a new proof of their soundness w.r.t. observational equivalence.

RocqArtifact  The source repository of the resulting code artifact is hosted
at https://github.com
of this thesis, it has been archived as doi:10.5281/zenodo.14697618. This
publication “An Abstract, Certified Account of Operational Game Semantics”,
to appear in Esor'25, is co-authored by my PhD advisors Tom HiRscHOWITZ,
Guilhem JABER and Yannick Zaxowskl, and covers most of the material from
Ch. 2, Ch. 4 and Ch. 5, although with far less details in the various proofs.
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[60] Paul Blain Levy, Call-By-Push-Value:
A Functional/Imperative Synthesis, 2004.
[30] Pierre-Louis Curien and Hugo Herbe-
lin, “The duality of computation,” 2000.
[33] Paul Downen and Zena M. Ariola,
“Compiling With Classical Connectives,”
2020.

[55] Seren B. Lassen, “Bisimulation in Un-
typed Lambda Calculus: Boshm Trees and
Bisimulation up to Context,” 1999.


https://github.com/lapin0t/ogs
https://doi.org/10.5281/zenodo.14697618

* Qur use of strict propositions is anec-
dotic, so do not worry if your favorite proof
assistant does not support it. On the other
hand, having an impredicative sort is crucial
for our lattice theoretic treatment of coin-
duction.

[26] Jesper Cockx, “Dependent Pattern
Matching and Proof-Relevant Unifica-
tion,” 2017.

1.5 Metatheory

Before sailing off, there is one last thing we need to do: review the metatheory
in which we will work. As we said earlier, our concrete code artifact is written
using the Rocq proof assistant. However, in order to make this thesis accessible
to a wider community, we have chosen to keep the present text self-contained and
without any Rocq snippet. Our construction are written quite explicitly in a
dependently typed programming style, but using an idealized type theory. From
this point on, we will assume a good understanding of dependent type theory in
general, and familiarity at least with 7eading code in either AGpa, RocqQor some
other type theory (LEAN, IDRIS, ...).

This type theory can be quite succinctly described as an idealized Rocq kernel
with an AGpa syntax. More explicitly, it is an intensional type theory, with a
predicative hierarchy of types Type;, an impredicative universe of propositions
Prop and strict* propositions SProp. We rely on typical ambiguity and cumula-
tivity to entirely disregard the universe levels of types. We moreover assume
propositional unicity of identity proofs in the form of STREICHER’s axiom K for
pattern matching [26], as well as definitional v-law on records and functions (in
particular for the empty record type 1). We further assume the ability to define

inductive data types and coinductive record types.

More superficially, we adopt Acpa like syntax. Let us go through all the
constructions. Keywords are highlighted in , definitions in blue, data type
constructors in green, record projections in pink and identifier and some primi-

tive type formers in black.

Function Types Given A : Type and B: A — Type, the dependent function
type is written (a : A) — B a, or possibly V @ — B a, when A can be inferred
from the context. We additionally make use of implicit argument, written in
braces like {a: A} = BaorV {a} — B a. We adopt the Rocq convention
of writing some argument binders left of the typing colon, simply separated
by spaces. For example, we may declare the polymorphic identity function as
id {A}: A — A,insteadofid: V {A} - A — A. When readability is at stake,
we will even entirely drop implicit binders, but we will try to use this sparingly.
Any dangling seemingly free identifier should be considered implicitly universally
quantified.

Remark 1.2: For Rocq programmers confused by the AGpa-like V symbol:
just parse the rest of the type as you do in RocqQ when left of the typing colon.
Any appearance of — switches back the rest to the usual parsing.

Aswe will use type families quite heavily, we introduce the notation ’l'ych 1o X,

todenote X; — ... = X, — Type.



(Inductive) Data Types Data types identifier are declared preceded by the
keyword data and we give their constructors as inference rules. When the rules are
self-referential, the type is always an inductive type. For extremely simple finite
types, such as booleans, or the empty type, we write the following.

bool : Type := true | false 0: Type :=
We declare so called mixfix identifiers with the symbol ,, as a placeholder for

arguments in the identifier. As such, the disjoint sum A + B is declared as

oot Type = Type — Type. Its constructors are given as follows.

a: A b: B
infla: A+ B inrb: A+ B

To avoid heavy notations, we may sometimes simply write +, or (+),

when referring to infix combinators such the disjoint sum which should

normally be identified by +.. The propositional equality type is declared as
—~.{A}: A — A — Prop, with the following constructor.

refl: z ==z

Pattern matching functions are written by listing their c/auses. Pattern matching
is dependent and we do not write absurd clauses, as the inr case in foo below.
swap{AB}: A+ B— B+ A

swap (inl @) := inr @

foo{A}: A+0— A
foo (inla) :=a
swap (inr b) :=inl b

Sometimes, we use the keyword, to pattern match on an expression. For

example, we could have alternatively defined swap as follows.

swap {AB}:A+B—B+A
T

Swap I :

inla:=inra

inrb:=inlbd

(Coinductive) Record Types Record types are introduced by the keyword

and by listing the type of their projections. When the declaration is self-
referential, record types are always coinductive. The sigma type is technically
declared as below, but we write it (a: A) x B a, mimicking the dependent
function type.
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The leftist programmer [71] unsettled by
this construction should note that we
use it very sparingly. In fact, we will only use
it in head position, as a construction
in disguise.

[71] Conor McBride and James McKinna,
“The view from the left,” 2004.
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sigma (A : Type) (B: A — Type): Type :=

fst : A
snd : B fst

We write projections in postfix notation and define record elements by so-called

record expressions, giving the value of each projection, such as follows.
flip{AB}: AxB—BxA

fst :=p.snd

flipp = [snd = p.fst

We sometimes introduce constructors for record elements. In particular, for the
sigma type we define the constructor ., allowing us to write pairs as the usual
(a,b), and destruct them by pattern matching. We additionally define the unit
type as the empty record 1: Type := [], with the constructor *.

Induction and Coinduction =~ We have not described which kind of inductive
or coinductive functions we should be allowed to write. This is quite a tricky
subject, as we use self-referential definitions instead of eliminators (and coelimi-
nators). As such we will here only mostly say that “it workslikein RocqQ”. Slightly
more precisely, we will allow ourselves mutually recursive definitions with calls on
structurally smaller arguments, and similarly only corecursive calls below record

projections.

Typeclasses  To structure our development, we will make use of typeclasses,
which are simply records introduced by the keyword and whose projections
are written free standing, i.e., with the record element left implicit. We use the
keyword , to denote the fact that a given typeclass declaration depends an
instance of a previously declared one. As an example, we could define magmas

and unital magmas as follows.
UnitalMagma (X : Type) :=
Magma (X : Type) := Magma X
(o X 5> X5 X d: X

ide{z}:idex ==z
e-id{z}:zeid==x

Extensional Equality  Although we pride ourselves in being very precise and
explicit in all of our constructions, there will be a small technical informality (see
Ch. 8 for a mea culpa). Because we work with coinductive objects in intensional
type theory, propositional equality is too strong for several statements. As such,
we use extensional equality in several places, written @ ~ b. The problem is that
the definition of extensional equality depends on the type we are considering,
so that this should be essentially considered as a kind of typeclass giving the



extensional equality equivalence relation at any given type. Note that this does
not mean that we use any extensionality axiom, only that we use a slightly sloppy
overloading of the ~ notation, as it cannot easily be given a single definition. We
mostly make use of it at function types (denoting pointwise equality) and coin-
ductive types (denoting strong bisimilarity) as well as on compound structures
containing such objects. In any case, we try to be as explicit as possible around

its use.

1.5 Metatheory
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Coinductive Game Strategies

As we have seen, operational game semantics, and more generally interactive
semantics, rest upon a dialogue following particular rules, a so-called two player
game. The main task in this chapter is to properly define what is meant by
“game”, “strategy”, and “transition system”, and to provide basic building blocks
for manipulating them. This chapter thus takes a step back and temporarily
puts on hold our concerns about programming language semantics, in order to
introduce the tools required to concretely represent games and strategies in type
theory. These tools are in part novel, but consist mostly of natural extensions of

preexisting devices.

2.1 A Matter of Computation

At heart, a strategy for a given two player game is an automaton of some kind, in
the loose sense that it has some internal states tracking information required to
choose moves, and alternates between two kinds of transitions. Whenever it is its
turn, i.e., in an active state, a strategy must choose a move to play and transition to
a passive state. Andina passive state, the strategy must accept any possible move
made by a hypothetical opponent and transition to an active state.

In the classical literature on automata, these transitions would typically be repre-
sented by a relation between input states, moves and output states. On the other
hand, in game semantics, the traditional approach is more extensional. There, a
strategy is represented by a subset of traces (finite or infinite sequences of moves),
i, by a formal language, subject to additional conditions. While perfectly
valid in a classical logic or set-theoretic metatheory, when translated directly to
type theory, both of these representations eschew the computational content of

strategies.

Our basis for an idiomatic type theoretical encoding of automata follows the
notion of interaction tree introduced by X1a et al. [93], originally motivated
by representing executable denotational semantics of programs with general
recursion. Interaction trees are a coinductive data structure encoding possibly
non-terminating computations, interacting with their environment by means
of uninterpreted events. Recognizing “programs” as Player strategies, “environ-
ments” as yet unknown Opponent strategies and “uninterpreted events” as move

exchanges, we are quite close to our setting of alternating two player games.

[93] Li-yao Xia, Yannick Zakowski, Paul
He, Chung-Kil Hur, Gregory Malecha,
Benjamin C. Pierce, and Steve Zdancewic,
“Interaction trees: representing recursive

and impure programs in CoQ,” 2020.
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[62] Paul Blain Levy and Sam Staton,
“Transition systems over games,” 2014.

[23] Venanzio Capretta, “General recur-

sion via coinductive types,” 2005.

[62] Paul Blain Levy and Sam Staton,
“Transition systems over games,” 2014.

However, there are two remaining obstacles in order to apply interaction trees to

our use case.

* Duality. We would like strategies and counter-strategies to have similar repre-
sentations, intuitively simply by swapping the sets of moves allowed for each
player. This is not directly possible with interaction trees, as the two kinds
of moves do not have the same status. In interaction trees, the events are
organized into a set of gueries Q : Type, and for each query a set of responses
R: @ — Type. Assuch one cannot just swap queries and responses as they are
not of the same sort.

* Indexing. In an interaction tree, while the set of allowed responses depends on
the previous query, queries themselves do not depend on anything. As such, all
queries are allowed at any point where it is Player’s turn to play. In the context
of two player games, this is a strong restriction on expressivity, which forbids
us to represent games where some Player moves are allowed at certain points of
the game but not at others, depending on what has been played before.

Luckily, both of these points can be resolved by swapping the notion of
event from interaction trees, with the notion of game introduced by LEvy &
STATON [62]. The rest of the chapter is organized as follows.

* In §2.2, we reconstruct LEVY & STATON’s notion of game and of coalgebraic
transition system.

* In §2.3, we introduce indexed interaction trees, a novel generalization of inter-
action trees adapted to the above notion of games.

* In§2.4, we define their bisimilarity together with powerful reasoning principles
based on a lattice-theoretic fixed point construction.

* In§2.5, we give a little bit of structure to indexed interaction tree, mostly lifted
from the non-indexed setting.

* In §2.6 we develop upon the theory of iteration operators, providing a novel
eventually guarded iteration, applicable to indexed interaction trees but also to

the delay monad [23] and to non-indexed interaction trees.

2.2 LEvy & StAaATON Games

2.2.1 An Intuitive Reconstruction

The definition of game obtained by LEvy & STATON in [62] arises quite naturally
from what is intuitively understood by a “game”. Let’s build it up first hand.

In the common sense of the word, a game is described by the moves allowed
at any point of the play, together with winning conditions and their associated

rewards. As we are here only interested in games insofar as they provide a frame-
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work for structured interactions, usual notions from classical game theory such
as “winning”, “reward” or “optimal play” will be completely absent. Moreover,
we will restrict our attention to games where two agents play in alternating turns.

Thus, for our purpose, games will just consist of the description of allowed moves.

Starting from the idea that a game is described by the moves allowed for each
player, arguably the simplest formalization is to say that a game consists of a
pair (M, M) of sets, encoding the set of moves allowed for each player. For
example, taking M + and M~ to be both equal to the set of UTF-8 character
strings, we can think of this as the “game of chatting” where the two players are to
alternatively exchange text messages. This definition readily encodes simple kinds
of interactions: at a coarse level we could argue that a lot of low-level protocols
consist in two players alternatively exchanging byte sequences. However, games-
as-set-pairs are very restrictive in the sense that any move from, say, M * is valid at
any point where it is the first player’s turn. Thus, games-as-set-pairs are missing a
shared game state, a game position, something enabling the set of allowed moves
to evolve over the course of the dialogue. In particular, our game of interest in
Ogs, makes use of such evolution of moves: since players introduce variables
while playing, moves mentioning some variable & should only be allowed after
has been introduced.

Still, this definition has the advantage of being quite symmetric: swapping the
two sets, we get an involution (M*, M ™) = (M~, M*) exchanging the roles

of both players. There are two lessons to be learnt from this naive definition:

* A game should be described by a pair of two objects of the same sort, each
describing what moves one player can do.
* For describing moves, mere sets can be a first approximation, but are a bit too

coarse for our purpose.

Back to the drawing board, let’s refine this notion of games-as-set-pairs. As we
were missing game positions, on which moves could then depend, it is but natural
to assume a set of such positions. More precisely, we will assume two sets of game
positions I T and I, where itis respectively the first player and the second player’s
turn to play. Then, instead of describing moves by mere sets, we can describe
them by two families Mt : It — Typeand M~ : I~ — Type, mapping to each
position the set of currently allowed moves. Finally, we must describe how the
position evolves after a move has been played. This can be encoded by two maps
nextt : V {it} > Mt it - T  andnext™: V{i"} = M~ i~ — It. This
leads us to the following definitions.

Definition 2.1 (Half-Game):

Given I, J : Type a half-game with input positions I and output positions J is

given by a record of the following type.

Games in such a restricted view—two-
player, alternating, no notion of winning
—are similar to combinatorial games and
might perhaps be more appropriately
named protocols, as typically arises in the
field of computer networks.
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This is called discrete game by LEvy &
STATON [62].

[10] Benedikt Ahrens and Peter LeFanu
Lumsdaine, “Displayed Categories,” 2019.

[32] Pierre-Evariste Dagand and Conor

McBride, “A Categorical Treatment of Or-

naments,” 2013, Sec. 1.3.

HGame I J :=
Move: I — Type
next {4} : Move i — J

Definition 2.2 (Game):
Given I, I~ : Type a game with active positions It and passive positions I is
given by a record of the following type.

Game It [~ :=

client: HGame It I—
server : HGame I~ I*

2.2.2 Categorical Structure

In order to make (half-)games into a proper category, we will define their mor-
phisms. As games are parametrized over sets of positions, game morphisms could

be naturally defined as parametrized over position morphisms, in the displayed

style of AHRENSs and LuMsDAINE [10]. Yet we will resist the urge to dive too
deeply into the structure of games and leave most of it for further work to expose.
Indeed, we will require none of it for our main goal of proving correctness of OGs.
Moreover, as already noted by DAGAND and McBRIDE [32] in the similar setting
of indexed containers, describing the extremely rich structures at play requires

advanced concepts, such as framed bicategories and two-sided fibrations.

Definition 2.3 (Half-Game Simulation):
Given two half-games A, B : HGame I J, a half-game simulation from A to
B is given by a record of the following type.

HSim {I J} (AB:HGame I J):=
hs-move {i} : A.Move i — B.Move i

hs-next {i} (m: A.Move %) : B.next (hs-move m) = A.next m

Definition 2.4 (Simulation,):
Given two games A, B: Game It I, a game simulation from A to Bis given
by a record of the following type.

Sim{ITI"}(AB: Game [T [7) :=

s-client : HSim A.client B.client
s-server : HSim B.server A.server

Remark 2.5 : Theidentity and composition of half-game simulations are given

as follows.



2.2.2 Categorical Structure

id{I J} (A: HGame I J): HSim A A

. hs-move m :=m
id :=
hs-next m = refl

Lo {IJ}{ABC:HGameI J}: HSim BC — HSim A B— HSim AC

FoG = [hs—move m := F.hs-move (G.hs—move m)

hs-next m := ...

The identity and composition of game simulations are then easily derived.

After defining the proper extensional equality on simulations (namely point-
wise equality of the hs-move projection), we could prove that the above
structure on half-games verifies the laws of a category, and easily deduce the
same fact on games. For the reasons explained above, we leave this sketching as
itis.

Remark 2.6: HGame extends to a strict functor Set®P X Set — Cat as wit-
nessed by the following action on morphisms, which we write curried and in

infix style.
Nolo: (I, = L) = HGame I} J; — (J; = Jy) = HGame I, J,

Move i := A.Move (f )
next m := g (A.next m)

fraAlg:=

The identity and composition laws of this functor hold definitionally.

2.2.3 Example Games

Let us introduce a couple example games, to get a feel for their expressivity.

Dual Game Perhaps the simplest combinator on games that we can devise is
dualization. This allows us to swap the roles of the client and the server. It is

defined as follows.
I I} Game I I~ — Game I- I
client := G.server

Gl =

server := G.client

Remark that dualization is szrictly involutive, i.e., o tis definitionally equal to

the identity function.

Nim  The game of Nim is typically played with matchsticks. A number of
matchsticks are on the playing board, grouped in several heaps. The two players
must in turn take at least one matchstick away from one heap. They might take

23
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as many matchsticks as they wish, so as long as they all belong to the same heap.
Implicitly, one looses when it is not possible to play, i.e., when there are no
matchsticks left.

Let us first encode the Nim game with a single heap. Itis a symmetric game, where
both active and passive positions are given by a natural number n, the number
of available matchsticks in the only heap. A move is then an natural number no
smaller than one and no greater than n. Equivalently, we can say thatitis 1 4 4,
where 4 is any natural number strictly smaller than 7. Conveniently, the encoding
in type theory of naturals strictly smaller than a given one are a well-known
inductive family, the canonical finite sets Fin: N — Type with constructors

given as follows.
1: Finn
ze;: Fin (sun) suyd: Fin (sun)
Givenn : Nand i : Fin n, the substraction n — (1 + ) is easily expressed.

LTt (n:N) = Finn — N
sun—jyzep =nm

sun —; sufi::nffi

We thus obtain the single-heap Nim game as follows.

Nim'rl“‘H : HGame NN Nim; : Game NN
. half Moven :=Finn ) client := Nim]rl“H
Nimj*" := . . Nim; := Lalf
i next {n}i:=mn i server := Nim}*!

We could obtain the many-heap Nim game by a similar construction. We would
define the positions as lists of natural numbers, the moves as first selecting a
heap and then choosing a number of matchsticks to take away, etc. Let us seck
a more structured approach. Intuitively, the multi-heap Nim game is just some
fixed number of copies of the single-heap game played simultaneously, in parallel.
In case of two copies, the game positions consist of pairs of single—heap Nim
positions. A move is then defined as choosing either a single-heap move on the
first position or on the second. Let us define this as a generic binary combinator
on games.

At {I J}: HGame I I — HGame J J — HGame (I x J) (I x J)

‘ Move (3, j) A.Move i + B.Move j
A+ B = | next (4, 4) (inl m) = (A.next m, 5)
next (4, §) (inr m) := (i, B.next m)



ACAT T} Game I T — Game J J — Game (I x J) (I x J)

client := A.client +f B.client
server := A.server +hlf B server

A+GB::

A many-heap Nim game, say with three heaps can then be simply be given as the
following sum.

Nimj : Game (N x N x N) (N x N x N)
Nimg = Nim; +6 Nim; +6 Nim;

Remark 2.7: Note that in the above binary sum of games, we constrained the
games to have only a single set of positions. Indeed, it is crucial in Nim that
one can play two times in a row in the same heap, while the opponent played
in an other one. This only makes sense when the active and passive positions
are the same.

For the curious reader, in case the active and passive positions differ, we
can devise the following “parallel” sum %G, where the server is restricted to
respond in the game that the client chose.

3" . HGame I, J, = HGame I, J,
— HGame (I; x L) ((J; x L) + (I; x Jy))

Move (iq,15) := A.Move 3, + B.Move iy
AN Bi= | next {iy,is} (inlm) := inl (A.next m, i,)
next {iq,i9} (inr m) :=inr (iy, B.next m)

_®" . HGame I, J, = HGame I, J,
— HGame ((I; x Jy) + (J; x L)) (J; x Jy)
Move (inl (i1,7,5)) = A.Move i,
Move (inr (§;,45)) = B.Move i
h R 1» %2 2
A® Bi= next {inl (iy,J9)} m := (A.next m, j,)
next {inr (jy,15)} m := (j;, B.next m)

DO AT JY: Game I T — Game J J
— Game (I; x L) ((J; x L) + (I; x Jy))

client := A.client B B.client
server := A.server @ B.server

A% B:=

This game, or rather its DE MoRrGAN dual A ®“ B:= (Al ¢ BT)? has
been used by LEvy & STATON [62] in their study of game strategy compo-
sition.
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[62] Paul Blain Levy and Sam Staton,

“Transition systems over games,” 2014.
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[27] John H. Conway, On Numbers and
Games, 1976.

[46] Furio Honsell and Marina Lenisa,
“Conway games, algebraically and coalge-
braically,” 2011.

[50] André Joyal, “Remarques sur la
théorie des jeux a deux personnes,” 1977.

* Fora more in-depth discussion of the two
notions of subsets in type theory, see [43]
Peter Hancock and Pierre Hyvernat, “Pro-
gramming interfaces and basic topology,”
2006, pp. 194-198.

Conway Games  CONWAY games are an important tool in the study of
combinatorial games [27] and may in fact be considered their prime definition.
We sketch here how they are an instance of our notion. They admit the following
exceedingly simple definition: 2 CoNwAY game G : CoNwaAY is given by two
subsets of CoNwaY games Gy, G C Conwav. The left subset G, is to be
thought of as the set of games reachable by the left player in one move, and
symmetrically for G. Depending on whether this self-referential definition is
interpreted inductively or coinductively, one obtains respectively the usual finite
CoNwAY games, or their infinite variant, sometimes called hypergame. For more
background, see HONSELL & LENIsA [46], as well as JovaL [50].

In order to translate this definition into type theory, the only question is how to
represent subsets. The most familiar representation is the powerset construction,

adopting the point of view of subsets as (proof-relevant) predicates:
Pow : Type — Type
Pow X := X — Type

However there is a different, more intensional one, viewing subsets as families*.
In this view, a subset is given by a type which encodes its domain, or support, or
total space, and by a decoding function from this domain to the original set.

Fam (X : Type) : Type :=

supp : Type
index : supp = X

We can go back and forth between the two representations, but only at the cost of
a bump in universe levels. As such, to avoid universe issues and keep the manip-
ulation tractable, it is important to choose the side which is most practical for the
task at hand. Because we want to easily manipulate elements of the two subsets
G}, and G, i.e., in this context the actual left moves and right moves, it is best to
have we have them readily available by adopting the second representation. More
pragmatically, the following definition would not go through when using Pow,

asitisnota Jtrz'ctly positive operator on types.

Definition 2.8 (Conway Game):
The set of potentially infinite CoNwAY games is given by elements of the
following coinductive record.

Conway : Type =

left : Fam CoNwAy
right: Fam Conway



We can now give a LEVY & STATON game of CONWAY games. Asin a CONwWAY
g g 8

game it is ambiguous whose turn it is to play, the sets of active and passive

positions will be the same. Moreover, the current position is in fact given by the

current Conway game.

Example 2.9 (Game of CONway Games):
We start by noticing that I — Fam J is just a shuffling of HGame I J:

fam-to-hg {I J}: (I — Fam J) — HGame I J

Movei = (F i).supp

fam-to-hg F' := [11ext {i} m := (F i).indexm

Then, the game of CONWaY games can be given as follows.

G-ConwAY : Game CoNnwAY CONWAY

L client := fam-to-hg left
G-CONWAY := . .
server := fam-to-hg right
To make this example more solid, we should relate the notion of strategy in
the sense of CONWAY to the strategies on G-ConwaY in the sense of LEvy &
STaTON. But let’s not get ahead of ourselves, as the latter are only introduced in
the next section. We will leave this little sketch as it is.

2.2.4 Strategies as Transition Systems

Following LEVY & STATON [62], we now define client strategies as transition sys-
tems over a given game. We will only define c/ient strategies, since server strategies
can be simply derived from client strategies on the dual game—the prime benefit
of our symmetric notion of game. We first need to define two interpretations of
half-games as functors.

Definition 2.10 (Half-Game Functors):

Given a half-game G : HGame I J, we define the active interpretation and
passive interpretation of G as functors Type? — Typel, written G @ _, and
G = _ and defined as follows.

(G® X) i:=(m:GMovei) x X (G.nextm)
(G= X)i:=(m:GMovei) = X (G.next m)
Definition 2.11 (Transition System):

Given a game G : Game It I~ and a family X : TypeI " a transition system
over G with output X is given by records of the following type.
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In LEVY & STATON [62], the output para-
meter X is not present and this is called
a small-step system over G. We can recover

their definition by setting X i := L.
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[23] Venanzio Capretta, “General recur-

sion via coinductive types,” 2005.

Systemg X :=

state™ : I+ — Type

state” : = — Type

play : state™ = X 4 state™ 4 G.client ® state™
coplay : state™ — G .server = state™

Remark 2.12: Intheabove, X =+ Y :=V {i} = X i = Y i denotes a mor-
phism of families. Moreover, we have slightly abused the + notation, silently
using its pointwise lifting to families (X +Y) i:= X i + Y 4.

More generally, given n-ary families X, Y : Typef-+In | the notation X —+ Y

will mean the following implicitly n-ary indexed function space.
V{iy. .0, > Xi .0, 2> Yi .0,

We will regularly implicitly lift constructions pointwise to families, although

we try to say it every time we encounter a new one.

There is a lot to unpack here. First the states: instead of a mere set, as is usual in
a classical transition system, they here consist of two families state™, state™ over
respectively the active and passive game positions. It is important not to confuse
positions and states. The former consists of the information used to determine
which moves are allowed to be played. The latter consists of the information used
by a given strategy to determine how to play. Their relationship is similar to that
of types to terms.

The play function takes as inputs an active position ¢: I T, an active state

s : statet ¢ over ¢ and returns one of three things:

X i “return move”
This case was not present in LEVY & STATON [62], butit allows a strategy
to end the game, provided it exhibits an output. As we will see with
interaction trees in §2.3, this allows us to equip transition systems with a

monad structure, an important tool for compositional manipulation.

state™ 1 “silent move”
In this case, the strategy postpones progression in the game. This case
allows for strategies to be partial in the same sense as CAPRETTA’s Delay
monad [23]. Total strategies without this case would make perfect sense,
but we are interested in arbitrary, hence partial, computations.

(G.client @ state™) & “ient move”
By. 0

position ¢

, this data consists of a client move valid at the current
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m : G.client.Move 1,
together with a passive state over the next position
x: state” (G.client.next m).

This case is the one which actually chooses a move and sends it to a

hypothetical opponent.

passive state over it, and a currently valid “server move”, and must then return an

active state over the next position.

Remark 2.13: It might seem as if the hypothetical opponent must be pure, as
return and silent moves appear in play but not in coplay, but this is not the
case. Recall that we are working with an alternating game. The intent is that
the transition system specifies the behavior of a strategy when the client is in
control of the game. When a hypothetical opponent plays a return move or
silent move, they do not give the control back to the client. As such the client
does not have anything to do in these cases, and is in fact unaware of these kinds

of moves played by the server.

2.3 Strategies as Indexed Interaction Trees

that is, by a state-and-transition-function presentation of automata. This repre-
sentation is theoretically satisfying, however most of the time it is painful to work
with formally. As an example, let’s assume we want to define a binary combinator,
taking two transition systems as arguments and returning a third one. Each of
the two inputs is a dependent record with four fields, so that we have to work
with eight input components to define the resulting transition systems, itself
consisting of two families of states, and then, depending on these new states, two

suitable transition functions. This is a lot to manage!

This unwieldiness is well known: while useful, writing state-machine-like code
explicitly is closely linked to the dreaded spaghetti code and callback bell. Tt is
perhaps the prime reason why widely used programming languages have started
organizing it more soundly with syntactic facilities like the yield keyword of
python’s generators or the await keyword for sequencing asynchronous promises
(or awaitables), now common in event-driven programming. Both of these
concepts are automata in disguise. Their associated syntactic constructs allow
one to write automata featuring bespoke state transitions (producing a sequence

element, sleeping in wait of a network response) as if they were normal code.

[62] Paul Blain Levy and Sam Staton,
“Transition systems over games,” 2014.

For enlightening background on Python’s
generator syntax, see for example the Moti-
vation section of the PEP 255.


https://peps.python.org/pep-0255/
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2.3 Strategies as Indexed Interaction Trees

As the precise definition of the state space is left implicit and for the language
implementation to work out, it can no longer be manipulated by the program-
mer. What is left is an opague notion of automaton (e.g., generators or awaitable
objects), for which the only possible operation is stepping, i.e., running until the

next transition.

These syntactic features have two benefits. First, we can program automata
mostly as we do for normal functions, only sprinkling some automata-specific
primitives where required. Second, automata are now black boxes, in a sense
much like functions. This makes them quite a bit easier to pass around as their
internal implementation details are tightly sealed away. In this section we will
apply the same methodology to the definition of transition systems over games
and this will bring us to our first contribution: indexed interaction trees.

2.3.1 From Games to Containers

for the following endofunctor on Type! ™ x Typel .
(AT, A7) > (X + At + G.client ® A~ | G.server = A1)

Then, as by definition any coalgebra maps uniquely into the final coalgebra, it
is sufficient to work with this final coalgebra, whose states intuitively consist
of infinite coinductive trees, extensionally describing the traces of any possible
transition system over G. This “universal” state space—the state space of the final

coalgebra—will be our core notion of automata.

However, we will not construct this final coalgebra directly, but start by simpli-
fying the setting slightly. Our motivation is the following. We insisted on having
a clearly symmetric notion of game, in order to easily swap the point of view
from client to server, a crucial concept in two player games. Strategies however,
are inherently biased to one side. There is “our” side, by convention the side of
the client, on which we emzt moves, and the side of the server, on which we
receive moves. Moreover, as we explained, a transition system only speciﬁes what
can happen when the client is in control of the game, i.c., in active positions. As
such it is more annoying than anything else to have our constructions like the
above endofunctor take place in a product category, forcing upon us fwo kinds of
positions, zwo kinds of states and wo kinds of transitions.

The trick to make the whole passive side disappear is to group in one atomic unit
the act of sending and then receiving a move. In other words, we can consider
a compound transition, where, starting from an active position, a strategy emits
a move, waits for an opponent move, and attains a new active position. This

exhibits strategies as coalgebras for the following functor.
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A X + A+ G.client ® (G.server = A)

We can apply this “fusing” trick not only to strategies but also to games. Quite
satisfyingly, when forgetting about the passive positions, games will morph into

the well-known notion of indexed polynomial functors, or more precisely their

[15] Thorsten Altenkirch, Neil Ghani, Pe-
ter G. Hancock, Conor McBride, and Peter
strategy will not directly be parametrized by a game, but more generally by = Morris, “Indexed containers,” 2015.

type-theoretic incarnation as indexed containers [15). As such, our notion of

a biased representation derived from it: an indexed container. Let us introduce
indexed containers and their relationship to games.

Definition 2.14 (Indexed Container):
Given I : Type, an indexed container with positions I is given by records of the

following type.
Container I : Type :=
Query : I — Type
Reply {7} : Query i — Type
next {4} {g: Query i} : Reply g — I

Definition 2.15 (Game to Container):

There is a functor from games to containers defined on object as follows.
|.] : Game It I~ — Container I

Query ¢ := A.client.Move %
|A| := | Reply g := A.server.Move (A.client.next q)
next r := A.server.nextr

Like games, containers can be interpreted as functors.

Definition 2.16 (Extension of a Container):
Given an indexed container X : Container I, we define its extension

[£] : Typel — Typel as the following functor.
[2] X i:=(q: X.Query ) x ((r: Z.Reply q) = X (X.nextr))

Notice that the mapping from games to containers preserves the functor
interpretation, in the sense that for all A:GameI* I, the functor
A.client ® (A.server = ) is definitionally equal to [| A|]. As such, our com-

pound transition function can be recast as a coalgebra for the following functor.  [93] Li-yao Xia, Yannick Zakowski, Paul
He, Chung-Kil Hur, Gregory Malecha,

A X + A + HLGJH A Benjamin C. Pierce, and Steve Zdancewic,
“Interaction trees: representing recursive

Remark 2.17: As a matter of fact, as hinted at the beginning of this chapter, and impure programs in CoQ,” 2020.

.. . . . [43] Peter Hancock and Pierre Hyvernat,
I went through this journey backwards. Starting from notions of strategies “Programming interfaces and basic topol-

such as interaction trees [93] or interaction structures [43] where “games” are  ogy,” 2006.
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* Although Rocq allows i, it is folklore
knowledge that this breaks subject reduc-
tion. See [68] Conor McBride, “Let's See
How Things Unfold,” 2009.

understood as polynomial functors, I had trouble obtaining a sensible notion
of dual game. With the realization that such polynomials can be “cut in halves”,

Iarrived at LEVY & STATON’s more symmetric notion of game.

Remark 2.18: Although games include information about passive positions
which containers do not, we can guess an over approximation of this informa-

tion and embed containers into games as follows.

[L]: (3: Container I) = Game I ((¢: I) x 3.Query 7)

client := Move ¢ - Z.Query !
D next {1} m := (i, m)
o [Move (7,m) := X.Reply m
SErver =
next m = Y.next m

We observe in passing that || o [] is definitionally equal to the identity
function on containers.

This embedding suggests that although our symmetric notion of game is more
precise than indexed containers, it is equally expressive. Indeed, we conjecture
that || and [_| exhibit indexed containers as a reflective subcategory of
games, but we have not introduced enough categorical structure to make this
statement precise.

2.3.2 Indexed Interaction Trees

Now that have seen how indexed containers provide us with a biased, but more
succinct description of games, we can temporarily forget about games to focus on
indexed containers. Recall that we observed transition systems as coalgebras and
that our goal was to define opaque szrategies as elements of the final coalgebra. In
our simplified setting, given a container ¥ and an output family X, this amounts

to constructing the following coinductive family, of indexed interaction trees.
VA X+A+[X] A

Our definition of this family proceeds in two steps. First we define the action
functor

FX:=X+A+][X] A,

and only then, we form the coinductive fixed point ¥F. Although seemingly
innocuous, this separation has its importance. Because the head type former of
F is the disjoint union +, it would seem natural to implement this definition as
a coinductive data type with three constructors. However, for metatheoretical

reasons, it is largely proscribed to pattern-match on coinductive objects*. As such,
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we first define the action functor as a data type, and then define its final coalgebra

as a coinductive record type with a single projection.

Definition 2.19 (Action Functor):
Given a signature X : Container I and an output X : I ypcI , the action on
with output X, Actiong, X : Typel — Type! is given by the following
CONSEructors.
z: X1 t: Ai
‘retr: Actiony; X A4 “tau t: Actions; X A4
g:2.Queryi k: (r: X.Replyq) = A (X.nextr)
“vis g k: Actiony, X A i

Action’s action on morphisms is without surprise, in fact it is functorial in

both arguments. We give it by overloading the name Actions;.

Actiong, : (X7 = X3) = (4 = Ay)
— Actiony; X; A; = Actionyg, Xy A,
Actiony, f g ("retz) = "ret (f x)
Actiony, f g ("taut) :="rec (g¢)
Actiong f g (vis g k) i="vis g (\ v+ g (k 7))

Being itself an indexed polynomial functor, Actiony; R has a thoroughly under-

stood theory of fixed points [15] and we can form its final coalgebra as a  [15] Thorsten Altenkirch, Neil Ghani, Pe-
ter G. Hancock, Conor McBride, and Peter

coinductive family which is accepted by most proof assistants.
Morris, “Indexed containers,” 2015.

Definition 2.20 (Indexed Interaction Tree):
Given a signature X : Container I and an output X : Typel, the family of
indexed interaction trees on ¥ with output X, denoted by I Trees; X : Typel, is
given by coinductive records of the following type.
ITrees; X 4 : Type =

[ out: Actiony, X (ITrees; X) ¢
Furthermore, define the following shorthands:

retx :=[ out:='retx

taut :=[ out:="raut

visq k:=[ out:="visqk
Remark 2.21: Note thatin accordance with Acpa and Rocq, our type theory

does not assume the v-law on coinductive records. As such, the above defin-
ition technically only constructs a weakly final coalgebra. Doing otherwise
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[68] Conor McBride, “Let's See How
Things Unfold,” 2009.

[93] Li-yao Xia, Yannick Zakowski, Paul
He, Chung-Kil Hur, Gregory Malecha,
Benjamin C. Pierce, and Steve Zdancewic,
“Interaction trees: representing recursive

and impure programs in CoQ,” 2020.

would require switching to a slightly more extensional type theory, such as
observational type theory [68].

The above definition is to interaction trees [93] what inductive families are to
inductive data types, in other words, the same construction but taking place in the
category Set! instead of Set. As we will discover in the remainder of this chapter,
all of the monadic theory of interaction trees lifts neatly to this newly indexed

setting.

Before moving on to define bisimilarity and other useful structure, let us first link
this definition to transition systems over games. First, as indexed interaction trees

are parametrized over containers, let us start by defining game strategies.

Definition 2.22 (Strategies):
Givenagame G : Game I I~ and output X : ’l’ypcl " the active and passive
strategies over G with output X are defined as follows.

Stratt g X : It —= Type Strat" g X : I — Type

Strat” g X i=ITree g X Strat” ¢ X := G.server = Stratt o X
Definition 2.23 (Strategy System,):
Given a game G': Game I I~ and output X : 'l‘ypcﬁ, active and passive

strategies are the states of a small step system over G with output X defined as
follows.

Stratg X : Systemg X

Stratg X :=
state™ := Stratt o X
state” := Strat g X
play s := s.out
‘retx :=inj; T
“taut :=inj, ¢

“vis ¢ k := inj; (g, k)
coplay km :=km

injy, inj, and inj; denote the obvious injections into the ternary disjoint union.

Definition 2.24 (System Unrolling):
For any system S : System X, the active and passive states can be respectively
unrolled to active and passive strategies. The mapping is given by the following

two mutually coinductive definitions.
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unroll™ : S.state™ = Strat™ 5 X

unrollt s :=
out := S.play s
inj; ="retx
inj, s := "tau (unroll* s)
inj; (m, s) := "vis m (unroll~ s)

unroll ™ : S.state™ = Strat” o X

unroll™ s m := unroll™ (S.coplay s m)

Remark 2.25: The above unrolling functions can be shown to be the compu-
tational part of the unique coalgebra morphism between a transition system
S and the strategy system Stratg X. We do not prove it formally, as it would
require properly defining transition system morphisms and their extensional

equivalence.

Remark 2.26: The above notion of strategy is quite different to the one given
by LEVY & STATON [62] (Def. 2). At a high level it serves a similar purpose,
namely obtaining an opaque representation for transition systems, which
forgets about implementation details. In line with the traditional set-theoretic
presentation of game semantics, they define strategies as subsets of finite z7aces.
These intuitively consist in the set of all the finite approximations of all the
possible paths through a strategy tree (discounting silent steps). Technically,
such as set must verify some conditions to be considered well-formed, mainly a
prefix closure condition (to be considered a valid set of finite approximations),
as well as a determinism condition on client moves. We provide a couple

comments but leave a more formal comparison for future work.

By virtue of representing a strategy as a set of valid traces, their notion of
strategy equivalence is a trace equivalence. Yet because the considered strategies
are deterministic, bisimulation and trace equivalence are known to coincide.
We conjecture that this can be shown in type theory, in other words, construc-
tively, the final coalgebra of Actiony; X embeds into strategies defined as some

predicates on traces.

Although LEVY & STATON do not prove it, we conjecture that in classical set
theory, one should be able to show that our notion and theirs are isomorphic,
in other words, that strategies as traces are indeed a final coalgebra. There is
however no hope of such result in type theory without further axioms, for two
reasons. First, the determinism condition restricts valid plays to be extended
by a unique client move. We conjecture that deducing a constructive function
computing the next move would amount to a form of unique choice principle.

Second, partiality of strategies is handled simply by not requiring that every

[62] Paul Blain Levy and Sam Staton,
“Transition systems over games,” 2014.
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[23] Venanzio Capretta, “General recur-
sion via coinductive types,” 2005.

finite valid trace in the strategy is extended by a client move. Instead, our repre-
sentation uses concrete silent "tau steps which might be played indefinitely. We

conjecture that going from the former to the latter would amount to a form of

excluded middle.

All'in all, our coinductive encoding of strategies as a final coalgebra can be seen
as slightly more intensional than LEvy & STATON’s. We believe thatit provides
a more idiomatic computational account of strategies.

2.3.3 Delay and Big-Step Transition Systems

Before heading to definition of bisimilarity of strategies, we introduce one last
notion, half-way between transition systems and strategies: big-step transition
systems. It is sometimes more convenient to work with a transition system, but
where the silent steps have been “grouped together”. In other words, we wish
to remove the silent steps from the transition function, and instead work with a

partial transition function returning either an output step or a visible step.

To do so, the prime choice is to use CAPRETTA’s delay monad [23]. Recall that it
is defined abstractly as the following final coalgebra.

Delay X :==vA. X + A

Instead of directly constructing this coinductive type, it can be observed that it
is readily an instance of our interaction trees. Defining it as an interaction tree
means that all of the forthcoming theory on interaction trees will effortlessly be
available on the delay monad.

Definition 2.27 (Delay Monad):

Define the trivially indexed void container as follows.
0p : Container 1

Queryi:=0
0p:= | Reply @ ()
next ¢ ()

Then, define the delay monad as follows.
Delay : Type — Type
Delay X :=ITree 1 (M i X) *

Remark 2.28: Because the delay monad is not indexed, it is given by a trivially
indexed interaction tree. This choice is rather debatable in our concrete code
artifact, as RocqQ’s inability to provide an »-law on the empty record 1 makes

it sometimes painful to work with trivially indexed interaction trees. Indeed,
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when exhibiting a trivially indexed family (4 : 1) — X ¢ for some given X, we
have the choice of pattern matching, or not, on the given index 4. It is usually
best not to, so that the family is definitionally constant, but this unknown ¢
can sometimes clash when a concrete * is expected. We gloss over these issues
and assume the y-law on 1. This makes every element of 1 definitionally equal

to x, and more importantly, every function 1 — X definitionally constant.

Definition 2.29 (Big-Step Transition System,):
Given agame G : Game It I~ and a family X : Typel Tla big-step transition
system over G with output X is given by records of the following type.

Big-Step-Systemg X :=

state™ : I+ — Type

state™ : I= — Type

play :statet — Delay (X + G.client ® state™)
coplay : state™ — G.server = state™

Note that we have implicitly lifted the delay monad pointwise to families by
Delay X 4 := Delay (X 7).

Remark 2.30: LEVY & STATON define a similar notion of big-step transition

system [62] (Def. 4). The sole difference is that they model partiality using  [62] Paul Blain Levy and Sam Staton,
the Option X := 1 + X monad. Once again, in a classical metatheory, this “Transition systems over games,” 2014.
is isomorphic to our definition (when the Delay monad is quotiented by

weak bisimilarity). Constructively however, Option is quite far from a suitable

model of partiality in the sense of TURING-complete computation, as it triv-

ially allows one to compute whether the “partial computation” is undefined or

returns an output.

Like transition systems, big-step transition systems can be unrolled into strategies.
This should not come as a surprise as a standard calculation on fixed points shows
the following isomorphism.

vA. X + A+ G.client ® G.server = A
~ VA . vB. (X + G.client ® G.server = A) + B

Definition 2.31 (Big-Step System Unrolling):

For any big-step system .S : Big-Step-Systemg X, the active and passive states
can be respectively #nrolled to active and passive strategies. The mapping is
given by the following three mutually coinductive definitions.
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unroll-aux : Delay (X + G.client ® state™) — Stratt o X

unroll-aux ¢ :=

out := t.out
“ret (inl z) = "retx
“ret (inr (m, s)) = "vis m (unroll~ s)
‘tau t :="tau (unroll-aux t)

unroll™ : S.statet — Strat™ o X

unroll™ s := unroll-aux (S.play s)

unroll ™ : S.state™ = Strat” o X

unroll” s m = unroll” (S.coplay s m)

Note that we have overloaded unroll™ and unroll™ for both small- and big-step
transition systems. In fact for the rest of this thesis we will be entirely concerned
with either strategies or big-step transition systems. With all representation vari-

ants of strategies now defined, let us now define their notions of equivalence.

2.4 Bisimilarity

The natural notion of equality on automata is the notion of bisimilarity. Intu-
itively, a bisimulation between two automata consists of a relation between their
respective states, which is preserved by the transition functions. Two automata
are then said to be bisimilar when one can exhibit a bisimulation relation between
them. Another way to phrase this is that two automata are bisimilar whenever
they are related by the greatest bisimulation relation, bisimzlarity, again a coin-
ductive notion. As our strategies feature silent moves (the “tau nodes of the action
functor), we will need to consider two variants, strong and weak bisimilarity.
Strong bisimilarity requires that both strategy trees match at each step, fully syn-
chronized. Weak bisimilarity, on the other hand, allows both strategies to differ

by a finite amount of “tau nodes in between any two synchronization points.

Before translating these ideas into type theory, we will need a bit of preliminary

tools. Most implementations of type theory provide some form of support for

definitions—are at times brittle, because type theory typically relies on a syntactic
guardedness criterion to decide whether a given definition should be accepted.
For simple definitions—in fact more precisely for computationally relevant defi-

nitions—I will indulge the whims of syntactic guardedness. But for complex



bisimilarity proofs such as those which will appear later in this thesis, being at the

mercy of a syntactic implementation detail is a recipe for failure.

To tackle this problem, AGDA provides more robust capabilities in the form of
sized types, for which the well-formedness criterion is based on typing. However
they are not available in Rocq, the language in which this thesis has been
formalized. Moreover, in AGDA’s experimental tradition, while sized types are of
practical help when used as intended, their precise semantics are still not fully

clear [2].

We will take an entirely different route, building coinduction for ourselves, inside
type theory. Indeed, as demonstrated by Pous’s cog-coinduction software
library [81] on which our artifact is based, powerful coinductive constructions
and reasoning principles are derivable in the presence of an impredicative sort of

propositions.

2.4.1 Coinduction with Complete Lattices

The basis of coq-coinduction is the observation that with impredicativity,
Prop forms a complete lattice ordered by implication. In fact, not only Prop, but
also predicates X — Prop or relations X — Y — Prop, our case of interest for
bisimilarity. By the KNASTER-TARSKI theorem [91] one can obtain the greatest
fixed pointv f := \/{z | < f 2} of any monotone endo-map f onacomplete
lattice. Henceforth, we will use <5 for the ordering relation of any lattice, and ~

for the derived equivalence relation.

This is only the first part of the story. Indeed this will provide us with the greatest
fixed point v f, in our case, bisimilarity, but the reasoning principles will be
cumbersome. At first sight, the only principle available is the following one.

xSy ysSfy

zSvf

Programming solely with this principle is painful, much in the same way as
manipulating inductive types solely using eliminators, instead of using pattern-
matching and recursive functions. Thankfully, in the context of bisimulations,
a line of work has been devoted to a theory of enbanced bisimulations, in which
the premise is weakened to z < f (g =)— bisimulation #p-to g—for some other
monotone map g. We say that g is a valid up-to principle for f whenever this

enhanced property is derivable.
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[2] Andreas Abel and Brigitte Pientka,
“Well-founded recursion with copatterns
and sized types,” 2016.

[81] Damien Pous, “Coinduction All the
Way Up,” 2016, https://github.com/

damien-pous/coinduction.

[91] Alfred Tarski, “A lattice-theoretical fix-
point theorem and its applications,” 1955.
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[81] Damien Pous, “Coinduction All the
Way Up,” 2016.

[86] Steven Schifer and Gert Smolka,
“Tower Induction and Up-to Techniques
for CCS with Fixed Points,” 2017.

The map g will typically enlarge its argument y, or otherwise tweak it, making
g-enhanced bisimulations y easier to exhibit than proper bisimulations. As an
example on relations, reasoning up-to transitivity means working with such a
principle for g R := R; R. Because valid up-to principles are not closed under
composition, several well-behaved sufficient conditions have been studied, such
as compatibility where g must verify g o f < f o g w.r.t. the pointwise order on
monotone maps. Satisfyingly, the least upper bound of all compatible maps is still
compatible. It is called the companion [81] of f written ¢ ;. This enables working
with the following up-to companion generalized principle.

ng(tfac)
zSvf

Thanks to the fact thatz < trx and s (tf :c) <ty x,onecan delay until actu-
ally required in the proof the choice and use of any particular valid up-to principle
g < ty. This theory based on the companion is the one used in the Rocq
formalization of this thesis. However, since I started writing the formalization, an
even more practical solution, SCHAFER and SMOLKA’s tower induction [86], has
been merged into coq-coinduction. Idid not have the time to port my Rocq
development to the new version of coq-coinduction, but I will nonetheless
present it here and use tower induction as the basis for defining bisimilarity. We
thus leave both the KNASTER-TARSKI construction as well as the companion
behind and now focus solely on tower induction.

Tower induction rests upon the inductive definition of the tower predicate
Tower g, whose elements can be understood as the transfinite iterations of f
starting from the greatest element T. In other words, Tower ¥ characterizes the
transfinite approximants of the greatest fixed point of f. We will refer to these
elements of the tower as candidates.

For more easily working with predicates, we introduce some notations. For any
predicate P : PropX we write z € P instead of P z and V & € P — .. instead
of V {z} — Pz — ... Moreover, given two predicates P, Q) : Prop™, we write
PCQtodenoteVx € P —>x € Q.

Definition 2.32 (Tower):
Given a complete lattice X and a monotone endo-map f: X — X, the f-
Tower is an inductive predicate Towery : PropX defined by the following
constructors.

t:x € Towcrf s: F C Towcrf

T-step t: f o € Towery Tinfs: NF € Tower ¢
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Theorem 2.33 (Tower Induction):
Given a complete lattice X, a2 monotone endo-map f: X — X and an inf-

closed predicate P : PropX , the following tower induction principle is true.

V€ lowery 2z €P— freP
Tower, C P

tower

Proof: Assuming that P is inf-closed i.e.,
K:V{F} +FCP— \FeP,

and assuming the hypothesis

H:VzeTower; 2z€P — fzeP,

define tower : Tower § C P by induction as follows.
tower {z}: Towersz — Px
tower (T-stept) := H ¢ (tower t)
tower (T-infs) = K (A p > tower (s p)) -

Remark 2.34: Note that tower induction is only a small rewording of a non-
dependent induction principle (called minimality in RocqQ) on membership
proofs of the tower predicate. The sole difference is that the minimality
principle does not require full inf-closedness, but only inf-closedness for fam-
ilies below the tower, i.e., the weaker F' C 'lbwcrf —-FCP—>\FeP.
However, inf-closedness is quite a common property, so that it can be auto-
matically derived in full for every properties of interest.

Lemma 2.35 (Tower Properties):
Given a complete lattice X and a monotone endo-map f: X — X, for all

candidate x € Tower : the following statements are true.

1) fzsz
@QVy—-ysSfy—yse

Proof: Both statements are proven by direct tower induction on the statement,
with simple calculations proving the hypotheses. Let us detail the first state-
ment to showcase the proof method.

Pose P z := f x < . Let us show the tower induction hypotheses.

* Assume F' C P.Letusshowthat A F' € P. By definition of the infimum,
it suffices to show that for any « € F' we have f (A F) < z. By definition
of the infimum and monotonicity f (A F) < f z. Conclude using the
assumption F' C P.

41
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[47] Chung-Kil Hur, Georg Neis, Derek
Dreyer, and Viktor Vafeiadis, “The power
of parameterization in coinductive proof,”
2013.

[86] Steven Schifer and Gert Smolka,

“Tower Induction and Up-to Techniques
for CCS with Fixed Points,” 2017.

* Assume x € Towery such that € P, let us show that fz € P. By
assumption we know that f z < z, thus by monotonicity, f (f z) < f «,

which concludes. [ |

Theorem 2.36 (Greatest Fixed Point):

Given a complete lattice X and a monotone endo-map f: X — X, pose
vf = /\ Tower .

The following statements are true.
(1) vf € Towery
(2) vf~ff)

BYVe—ozsSfzoazSvf

Proof:
(1) By T-inf (A ¢ = ¢).
(2) By antisymmetry.
*vf < f(vf) By T-stepand (1), wehave f (v f) € Tower;. Con-

clude by definition of » as an infimum.

indeed the greatest fixed point of f. On the other hand, (1) might seem like a
technical lemma but it is just as important, if not more. Indeed, knowing that v/ f
is part of the tower—i.e., that it is itself a transfinite approximation of the greatest
properties about »/ f. Although tower induction also proves properties about any
candidate (elements of the tower), it will be our prime reasoning principle for
proving properties and the greatest fixed point. As we will see shortly, lemmas
about arbitrary candidates (also proven by tower induction) will provide us with

a practical alternative to more usual valid up-to principles.

And this is it! I really want to stress the fact that this is the entirety of the
core mathematical content of this theory of coinduction, and yet it provides an
exceedingly versatile and easy-to-use theorem. It is easily shown to subsume the
principles provided by the companion construction and by other frameworks
such as parametrized coinduction [47]. Despite its great utility, the cog-
coinduction library is extremely small. Besides some applications and generic
theorems, its only additional content consist in several helpers e.g., for deriving
inf-closedness of predicates, the definition of the most useful instances of com-
plete lattices and some generic duality and symmetry arguments. The article by
ScHAFER and SMOLKA [86] is similarly short, providing the whole theory in
merely three pages, including the proofs and the derivation of the companion. As
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such, if you need to work with coinduction and are happy with an impredicative

universe of propositions, I heartily recommend you to try out tower induction.

2.4.2 Strong Bisimilarity

Equipped with this new construction for greatest fixed points we are ready
to define bisimilarity. As our strategies feature silent transitions, there are two
variants of interest: strong bisimilarity which considers silent transitions as any
other “normal” transition, and weak bisimilarity, which allows to skip over
any finite number of silent steps. We start by describing the strong bisimilarity,
which embodies the natural notion of extensional equality for strategies, but the

construction of weak bisimilarity will proceed very similarly.

Bisimulations and simulations for coalgebraic presentations of automata have
been well studied, with the general blueprint outlined by LEvy [61]. Succinctly,
bisimulations for F-coalgebras can be expressed given an analogue to the functor
F, but operating on relations instead of sets. More precisely, this operator is called
a relator [61][53] and takes relations X —+ Y to relations FFX -+ FY, subject
to several conditions. Then, given a relator I' and two coalgebras ¢ : X — F.X
and ¢ : Y — FY, we can derive 2 monotone endo-map which takes a relation
R: X Y to the re-indexed relation ©)T'R(1: X —+ Y. This resulting rela-
tion can be understood in plain words: after one unfolding on both sides, the
coalgebra states are related by R under I'. In a sense, I' decides when two steps
should be considered matching or synchronized, provided we give it a relation on
states. Bisimilarity is then obtained by the greatest fixed point of this monotone

map, while bisimulations are its pre-fixed points.

We will largely follow this blueprint, only concerned with the final coalgebras
given by interaction trees, with perhaps the slight technicality that we are working
not with sets and relations, but (indexed) set families and relation families. But
to better fit our setting, we adopt a small twist. Recall that Actiony, is functorial
with respect to both the output parameter X as well as the second “coalgebra”
parameter. Indeed we intend to show that strategies form a monad, so that in
particular they are functorial with respect to this output X. Hence, our goal is
not to construct a single relation between strategies, but rather devise an operator

taking a relation family on two output families
X"V {i} = XYi— X2%i— Prop,
to the strong bisimilarity on strategies with the respective outputs

LA XLV {i} = ITreey Xti— ITrees, X?i— Prop .

[61] Paul Blain Levy, “Similarity Quotients
as Final Coalgebras,” 2011.

[53] Ugo Dal Lago, Francesco Gavazzo,
and Paul Blain Levy, “Effectful applicative
bisimilarity: Monads, relators, and Howe's
method,” 2017.
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This is quite reminiscent of a relator on ITreey! And indeed, pushing the
output parameter inside our monotone map will not fundamentally change the
construction. Instead of working in the complete lattice of relation families, we

will adopt the complete lattice of I Treey, relators.
Let us start with some preliminary notation for our indexed relations.

Definition 2.37 (Family Relation):
Given I : Type and two families X, Y : Type!, the type of family relations
between X andY is defined as follows.

Rel XY :=V{i}>Xi—>Yi— Prop

We denote by 5 (in infix notation) the standard ordering on family relations,
defined by

RsS:=V{i}(z:Xi)(y:Yi)>Rzxy— Sxy,
forany R, S : IRel X' Y.

We define the standard operators of diagonal, converse, and sequential compo-
sition and re-indexing on family relations, as follows.

A" IRel X X JiIRI XY -5 IRelY X
A"ab:=a=5> R'ab=Rba
sintIRel XY 5 [Rel Y Z — IRel X Z
(R;S)ac:=3b,RabASbc

Dol (Xg =+ X)) 2RI X, Y, - (Y, 2 Y)) 2[Rl X, Y,
(f)R(g)ab:=R(fa)(gb)

Definition 2.38 (Family Equivalence):
Given R : [Rel X X, we say that

* R isreflexive whenever A" S R;

* R issymmetric whenever R" < R;

* R istransitive whenever R ; R < R;and

* R isan equivalence whenever it is reflexive, symmetric, and transitive.
We can now define the relational counterpart to Actiony,.

Definition 2.39 (Action Relator):
Given X : Container I, an outputrelation X” : IRel X! X2 and aparameter
relation A" : IRel A A2, the action relator over ¥ of signature

Actiony, X" A" : IRel (Actionz X! Al) (Actionz X1 AQ)



is defined by the following constructors.
" X"zt 2
“ret” 7 Actionfy, X7 AT (“ret &) (“ret 22)
i AT ¢ g2
“tau” 7 : Actionly X7 AT (“rau ¢1) (“tau £2)
q:Z.Queryi k":(r:X.Replyq) = A" (k' r) (kK* )
“vis” g k7 : Actiony, X™ A" (“vis g k1) (“vis g k2)

Remark 2.40: The above definition of Actiony, is quite a mouthful, yet it
should be noted that its derivation is entirely straightforward. Categorically, it
is the canonical lifting of Actionsy, to relations, which can be obtained in type

theory by a relational, or parametricity interpretation [19].

Lemma 2.41:

Actiony, is monotone in both arguments, i.c.
X[ < X7 — AT S AL — Actiony, XT A7 < Actiony, X7 A7

Moreover the following statements hold (understood as universally quanti-
fied).
A" < Actiony, AT A"
(Actiony, X" AT)T < Actiony, XAt
Actiony, X7 AY ; Actiony, X5 AL < Actiony, (X7 ;5 X3) (AT 5 AL)
too-long < Actiony, (fy ) X" (f3) (g1) A" ( f3)

with too-long := Actiony, f; g; ) Actiony, X" A" ( Actiony, fy g
Proof: All by direct case analysis. ]

Remark 2.42: Although we never formally provide a definition of relators,
their list of conditions can be inferred from the above definition, which
exhibits Actiony, s asa relator in two arguments. More precisely, the statement
related to the converse operator is not always required and defines a lax conver-
sive relator [61]. Note that although all the reverse inequalities also holds, we
will not make use of them.

Intuitively, the relator conditions are heterogeneous generalizations (strength-
enings) of the facts that a relator sends reflexive relations to reflexive relations,
symmetric relations to symmetric relations, etc.
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[19] Jean-Philippe Bernardy, Patrik Jans-
son, and Ross Paterson, “Proofs for free -

Parametricity for dependent types,” 2012.

[61] Paul Blain Levy, “Similarity Quotients
as Final Coalgebras,” 2011.
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Definition 2.43 (Pre-Relator Lattice):
Given X : Container I, we define the interaction pre-relator lattice over 3 as

follows.
L=V {X' X?} = IRel X! X% — IRel (ITreey; X1) (ITreey, X?)

It is ultimately a set of dependent functions into Prop, as such it forms a

complete lattice by pointwise lifting of the structure on Prop.

Remark 2.44: The name “pre-relator” comes from the fact that the elements
of this lattice have the same type as I Treey, relators, but they are not constrained
by any condition.

Definition 2.45 (Strong Bisimilarity):

Given X : Container I, we define the strong bisimulation map over ¥ as the

following monotone endo-map on the pre-relator lattice over X.
e . y
sbisimg, : L5 = L5

sbisimyy F X" := out ) Actiony, X" (F X") (out

For any given family relation X" : IRel X 1 X2 we define heterogeneous and

homogeneous strong bisimilarity over X", denoted by 2~ X" |, as follows.

a®] X" |b:=vsbisimg X" ab
a=b =a = A"]b

Lemma 2.46:
Given X: Container I, for all strong bisimulation candidates
F € Tower

wbisimy» the following statements are true.

XT<Xs 5 F XIS TF X,
AT S F AT
(Fx") <sFx'
FXF X5 < T (X]:X3)
Asaconsequence, when X7 : [Rel X X isan equivalence relation, & X isan

equivalence relation. As a particularly important consequence, recalling that

v sbisimy, € Towery, ., all the above statements are true for strong bisimi-

larity, and thus 2 is an equivalence relation.

Proof: All statements are proven by direct tower induction, applying the

For example for the first one, pose P & to be the goal, i.e.,
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PF =V {X' X%} {X] X} : IRel X! X?}
XIS X T X STF X5
P is inf-closed. Moreover, the premise of tower induction requires that
P F — P (sbisimg F),
i.e., introducing all arguments of the implication we need to prove

V{Xle}{Xerg:IRc]..}—)X{ﬁXQ—).’fX{S?XS
X7 < X3 Actiong, X7 (F XT7) (¢;.0ut) (t5.0ut)
Actionl, X5 (F X7) (t1.0ut) (ty.out)

which follows by direct application of the fact that Actiony, is monotone in
| ]

Remark 2.47: In ] , a statement similar to the one concerned with

the functorial re-indexing which we had in L 1is missing. It is simply
because we have not yet defined the action of ITrecs; on morphisms, but we

will prove it in due time.

This completes the basic theory of strong bisimilarity: we have defined it and
relation on outputs is well-behaved, not only strong bisimilarity is an equivalence
relation, but every bisimulation candidate is an equivalence relation. As a
consequence, during any tower induction proof, by definition featuring such a
bisimulation candidate, one can use these properties. In a sense, strong bisimu-

lation proofs can work up-to reflexivity, symmetry and transitivity.

2.4.3 Weak Bisimilarity

As previously hinted at, we wish to characterize a second notion of bisimilarity,
which would gloss over the precise number of silent "tau moves of the two consid-
ered interaction trees. While strong bisimilarity will play the role of (extensional)
equality between trees, that is, a technical tool, weak bisimilarity will play the role

of a semantic equivalence.

To define weak bisimilarity, we follow a similar route to strong bisimilarity,
reusing the action relator but defining a new monotone endo-map on the pre-
relator lattice. To build this monotone map, we will sequence the action relator
on the left and on the right with a small gadget, allowing to skip over a finite
number of silent moves before landing in the action relator. This gadget, the

eating relation S, can be understood as a form of reduction relation on interac-
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tion trees, with ¢ < ¢’ stating that ¢ starts with some amount of silent steps and

finally arrives at ¢’

For readability, let us start by defining a shorthand for trees where the top layer
of actions has been exposed.

Definition 2.48 (Exposed Interaction trees):
Given X : Container I and X : ‘l'ypcl , define exposed interaction trees with
output X as the following shorthand.

"ITrees; X := Actionys X (ITrees; X)

Definition 2.49 (Eating Relation):
Given X : Container I and X : Typel, define the inductive eating relation
Fatgy : TRel (‘TTrees; X) (‘T Trees; X) by the following constructors.

e: Fatg (ty.out) ty

eat-refl : Eatg tt eat-step € : Eatg (“tau tl) ty
We define the following shorthands:
X xT
Sy = Fatyy 2, = Fatg

Lemma 2.50:

For all ¥ and R, the eating relation Fatg is reflexive and transitive.
Proof: By direct induction. [

Definition 2.51 (Weak Bisimilarity):
Given X : Container I, we define the weak bisimulation map over ¥ as

whisimgy 1 £57 = L5,
whisimg, F X" := out ) & ; Actionf X" (F X") ; w2 (out

We define heterogeneous and homogeneous weak bisimilarity as follows.

a~[ X" |b:=vwbisimg X" ab
a~b =a~|A"|Db

Remark 2.52: The weak bisimulation map can be understood quite simply.
Given a pre-relator F over X and a relation on outputs, it relates interaction
trees which both “reduce” to some smaller trees, peeling away some number of
silent steps, then both emit “synchronized” moves as constrained by Actiony,,
i.e., both return, silent or visible moves, and finally the resulting subtrees are

related by 7.



We can now give a first batch of easy properties on weak bisimilarity and weak
bisimulation candidates.

Lemma 2.53:
Given X : Container I, for all candidate weak bisimulations

F € Tower , the following statements hold.

whisimyy

XT<X; > F X < F X}
AT S F AT

(Fx sFx'

Recalling again that v wbisimy, € Tower,, these statements apply to

Disimyy?
weak bisimilarity, and in particular the homogeneous weak bisimilarity ~ is

reflexive and symmetric.

Proof: All by direct tower induction, as for Lemma 2.46. n

statement regarding sequential composition of relations which generalizes the
fact that any weak bisimulation candidates sends transitive relations to transitive
relations. Indeed it is well-known that weak bisimulation up-to transitivity is not
a valid proof technique [82]. As such, there is no hope that the corresponding
statement on weak bisimulations candidates holds. However, we would still like
to prove that weak bisimilarity is transitive! The proof is slightly more involved

and will involve a lot of shuffling around the eating gadget.

Once again, to make the notations more compact and less overwhelming, we need
to introduce several helpers for working with one-step unfolded bisimulation
relations.

Definition 2.54 (Exposed Bisimulations):
Given ¥ : Container I, F : £y, and X7 : [Rel X' X2, define the following
shorthands for strong bisimulation unfolding

“F : IRel (ITreeg, X1) (‘ITreey; X2)
$F = Actiony, X" (F XT)

and weak bisimulation unfolding
VT IRel ("TTrees; X1) ("ITrees; X2)
VF =5 Actiony, XT(F XT) s w2

We can now prove generalized transitivity of weak bisimilarity.
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[82] Damien Pous and Davide Sangiorgi,
“Enhancements of the bisimulation proof
method,” 2011.
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Lemma 2.55:
Given 3 : Container I, X7 : IRel X; X5, and X7 : IRel X, X, the follow-
ing holds.

SXT XD ] 5 Al XTIXE
Proof: Pose the following shorthands, respectively for “one step synchroniza-
tion then weak bisimilarity” and for one-step unfolding of weak bisimilarity.

Let us recall our new notations as applied to weak bisimilarity. Note that the
output relation X" will be hidden away, implicitly instantiated either as X7,
XJor X7 ; X7,

S/q or A gt g T T () r

S~ 1= Actiony, X7 (&~ X7 )

Vai= s RS

We prove the following statements by direct induction on the eating relation
foralla, b, c.

(1) a"taub’~c—a’~c
(2) a*~"taubyc—a‘~c

We then observe that the following statements are true by case analysis.

(3) “taua "~ b — a.out V'~
(4) a V"~ "taub — a V'~ b.out

Using 3. and 4. and transitivity of the eating relation, prove the following
statements by induction.

(5) a (VA5 “retr = a (S¢'A) Cretr
(6) a (YAsy) Visgk = a (') Visg k
(7) “retr (2;Va2) b — “retr (A52) b
(8) “isqk (w;"~) b — Visqk ("~52) b

Finally, note that the following is true by (nested) induction.

(9) a(z:%)b—>asbVarbd

Finally, we prove the theorem statement by tower induction on
PF =~ X[~ X5 S F (X[} X5).

P isinf-closed. Assuming P F, let us prove P (wbisimy, F), i.e.,
S XI5~ X5 ] S whisimg F (XT3 X5)

By one step unfolding, it suffices to prove the following.
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Wy = Wy < W‘?’

Introducing and decomposing the hypotheses, we obtain the following:
QS x R Iy by R Yy L
Apply 9. between x4 and y;. Assume w.lo.g. that the left case is true ie.,
Ty S Yy (the right case is symmetric). By case on y;.
* When y, :="retr,
a Ty A~ Ty Scretr Ry, 2 c

N T R Ty 2 Ty S TEtT A Yy 2 ¢ byrefl.
A%Y

a ~ Ty S 'ret T A Yy 2 ¢ bydef.
a X x3 ‘~ 'retr R Yy 2 ¢ bys.

Actiony, (X7 5 X3) (& XT |5~ X3 1) 5 ys-

By coinduction hypothesis ~| X7 |~ XT | S F (X7 ; X3). As such,

Actiony, (X7 ; X3) (F (X7 X3)) 23 Yo
and finally conclude “F a b.

* When y, := "vis q k, the reasoning is the same as for y; := "retr, swapping

lemma S. with lemma 6.
* Wheny, :="taut,

a ST R Ty Staut R Yy 2 C

a N T A Xy ‘A Yy c byl

Actiony, (X7 5 X3) (& XT |5~ X3 ) @5 vy,

we then conclude as before by monotonicity applied to the coinduction

hypotheses.

This concludes our tower induction, proving that for all weak bisimulation
candidate € ITree ,wehave~| X7 |5~ X5 | S F (X7 5 X7). As

in particular weak bisimilarity is a bisimulation candidate, we finally conclude

whisimsy

our generalized transitivity property

MXTA XS s AL XTXG n
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After transitivity, we would like another reasoning principle such that during any

weak bisimulation proof, we can freely rewrite by any strong bisimilarity proof.

Lemma 2.56 (Up-to Strong Bisimilarity):
Given X: Container I, X7 :IRel X X,, X7 :IRel Xy X3 and
X35 : IRel X3 X, the following holds for any weak bisimulation candidates
F e T()\Ver\&'bisimz?

XY XS H Xy IS F(XT 5 X5 X)),
Proof: Let us define the following shorthand.

Recall again the definition of our compact notations. Note that we will use
both *F and " ininfix style. As before, the outputrelation X" will be hidden

and instantiated variously.
& := Actiony, X" [ X7 ]
$F = Actiony, X" (F X7)
F =G F 2
Prove the following statements by direct induction.

1) a (25) b—a (S5'2) b
(2) a(z;=)b—a (22)b

Then, let us prove the goal by tower induction on
PF =~X] 7 X5~ X5 ]S T (X7 X5 X3).
P isinf-closed. Assuming P F, let us prove P (wbisimy, F), i.e.,
& X7 |; whisimyy F X7 5 & X3 | < whisimy, & (X7 ; X3 5 X%).

By one-step unfolding it suffices to prove the following.

& ; \V? ; \& g \\'?

Introducing and destructing the hypotheses we proceed as follows.
a'=b Nz Fay,w ¢ '=d
aS Yy 2a T 19 =y, d byland2.

Actiong, (XT3 X35 X3) (& X7 |1 F X552 X3 1) 91 -

Y1 °F Yy and finally conclude a “F b -



Let us reap some benefits from the very general lemmas we have proven until now
and deduce that strong bisimilarity is included in weak bisimilarity. Technically
the proof is so simple that we would never really use it, as we would instead
“prove” it on-the-fly by applying one of the more powerful principles. This is
particularly true in Rocq, where the setoid_rewrite mechanism [88] can be
hooked up to all of our monotonicity statements and relation inclusions. This
is quite appreciable as there is a myriad of precise cases where we would like to
“rewrite” by a known bisimilarity proof. Justifying them requires tedious chains
of applications of structural lemmas regarding reflexivity, symmetry and transi-
tivity such as we just proved. In the following chapters we will not justify them as

thoroughly, but for now let us see how this inclusion property goes.

Lemma 2.57 (Strong To Weak):
Given ¥ : Container I and X7 : IRel X1 X2 the following inclusion holds.

S arpal

Proof: Of course the direct proof by tower induction is quite trivial, but as

motivated above, let us prove it solely by using already proven properties.

M XTI S XA AT diagonal concatenation
S X" AAT] AT Lemma 2.53 and 2.46
<A XTI AT AT Lemma 2.56
<A X7 Lemma 2.53

matter of filling “missing arguments” by reflexivity and refolding them in the

conclusion by monotonicity. [ |

This sequence of juggling concludes our core properties for weak bisimilarity:
we know that for well-behaved X" it is an equivalence relation and that it
supports coinductive proofs up-to reflexivity, up-to symmetry and up-to strong

bisimilarity.

2.5 Monad Structure

An important structure available on interaction trees is that they form a monad.
Indeed, as they are parametrized by an output family X, a strategy with output X
can be considered as an impure computation returning some X. Its effects will be
to perform game moves and wait for an answer. While at first sight—considering
only the goal of representing game strategies—such an output might seem unnec-
essary, the compositionality offered by monads, that is, sequential composition,

is tremendously useful to construct and reason on strategies piece wise.
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[88] Matthieu Sozeau, “A New Look at
Generalized Rewriting in Type Theory,”
2009.
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Note that defining substy with f fixed is
not a mere stylistic consideration. Indeed,
what it achieves, is to pull the binder for
f out of the coinductive definition. This
enables the syntactic guardedness checker
to more easily understand subsequent coin-
ductive definitions making use of the bind
operator. To the best of my knowledge, this
trick was first used in the INTERACTION-
TREE library [93]. In general, it is always
fruitful to take as many binders as possible

out of a coinductive definition.

The monad structure on interaction trees takes place in the family category Type!
and its laws hold both w.r.t. strong bisimilarity and weak bisimilarity. One way to
view this is to say that we will define fwo monads, respectively defined by quoti-
enting the resulting trees by strong or weak bisimilarity. However, in line with our
choice of using intensional type theory, we will first define a pre-monad structure,
containing only the computationally relevant operation and then provide two

sets of laws.

which can be typed as follows.
ret {X}: X = [Treey, X

Let us define the fmap operator and the bind operator, which works by tree
grafting.

Definition 2.58 (Interaction Tree Fmap):
Forany ¥ : Container I, interaction tree fmap operator is given by the follow-

ing coinductive definition.
LS AX Y (X = Y) = [Treeys X = [Treey YV

out := t.out
. ‘ret ¢ ‘ret (f x)
f@t= “taut = "rau (f (§) 1)
“vis q k :="vis q ( T f <$> k T)

Definition 2.59 (Interaction Tree Bind):
Let ¥: Container I. For any given X, Y : Type! and f: X — [Treey, Y,
first define interaction tree substitution as follows.

substf : [Treesy X — [Treey, Y

out := t.out

‘retx = (f x).out

SUbStf ti= “taut := "tau (substf t)

“vis q k :="vis q ( 7+ substy (k r))

Then, define the interaction tree bind operator as

3= {XYi}:ITreeg Xi— (X = [Tree V) — [Treey, Y i
t = f:= substy ¢

and the kleisli composition as
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o= XY Z3: (X = [Tree V) — (Y = [Treey, Z)
= (X = [Treey, Z)
(f>=g)z:=fz>=g

Remark 2.60: The above presentation of the bind operator can be recognized

as the daemonic bind of McBRIDE [69], who studied monads on type families  [69] Conor McBride, “Kleisli Arrows of
of the exact same kind as we do. The indexing provides us with the starting Outrageous Fortune,” 2011
position of the computation (in our case, strategy), but we do not know the

ending position at which a “ret might appear. In face of this uncertainty, which

they called daemonic, the continuation must be able to treat any possible

position.

McBRIDE further shows how we can generically derive a doubly-indexed

parametrized monad [17] this time operating on sets and not families, which  [17] Robert Atkey, “Parameterised notions

can be represented as follows. of computation,” 2009.

M : Type = I = I — Type
This second representation supports a corresponding angelic bind operator,

where the end position of the head computation is known, such that the
continuation need only to handle that one. It is typed as follows.

=, MXij>(X—>MYjk)->MXik

The trick is to define the following predicate a-key essentially encoding the

fibers of a constant function (A z +> 1) : X — I.
Q. Type = I = I — Type r: X
okz: (X Qi)4

This enables to type a hybrid angelic bind on interaction trees as follows.
= [Trees, (X Q §) i — (X — [Treesy Y j) — [Trees; Y i

Sadly this thesis we make very little use of such new tricks that can be pulled
in indexed settings. We will only need to study the operators and properties
lifted from the non-indexed setting, which are thus always quite unoriginal

w.r.t. indexing.

Before proving the monad laws, we will first prove that our operators respect both
strong and weak bisimilarity, in other words that they are monotone. For strong

bisimilarity and ret, the statement is the following.

VX7 IR X X2} {i: I} @y s XD i) {2y X4}

— X" xy xy Sretzy & X7 | retay
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This is quite heavy, and many more complex monotonicity statements will appear
in the thesis. Thus, from now on, we will extensively use relational combinators.
To simplify reading such complex relations, we will write a {R)) bfor R a b. Our
final goal is to replace the above verbose statement with the following.

VA{X"} — ret (X7 =" & X7 ) ret

To achieve this, we define the following combinators.
Lo iR X, Xy o RV, Y o Rel (X, = Y)) (X, — V)
(R="8) fg:=V{z1z} = Ray zy = S (f 1) (9 33)
LT Lt IRl X Xy —» IRl Y, = IRel (X = 1)) (X, =+ 1))
(R="8) fg:=V{iz,z} = R{i} z; 2y = S{i} (f2y) (9 25)
V" IRel X Xy — Rel (V {3} — X5 4) (V {i} = X5 49)
V'R fg:=V{i} = R(f {i}) (¢ {i})

Moreover, we will write V" A for V"(\ {i} i+ A), with a very weak parsing
precedence.

Lemma 2.61 (ITree Monad Monotonicity):
Given X : Container I, for any X" and Y and for any strong or weak bisim-
ulation candidate & € sbisimy, or F € whisimy;, the following holds.

(1) ret (WX =7 F XY rec
2) CO) (VX =2"Y") =" (VF X" FY))(L6)L)
(B3) (o= ) (V" F X" =" (VX" " FYT) T FYT) (L)

As direct consequences, return, fmap, and bind respect both strong and weak
bisimilarity:
(4) ret (V" X" =" =~ X’" 1) ret
(5) ret (V" X" =" &~ X" |) ret
©) L®.)(vrxr —” Y7 =" (VA X ST YT ])) (LE)L)
(7) (- <$> D (VX T YT) ST (VA XN ST YT])) (LE)L)
( =) (VAL X7 ] ST (VX T
=AY ) (=)
©) ( >=) ((VT A X (VX T
DoAY ) =)

Proof:
(1) For F € sbisimy, assuming X" x; x,, “ret” proves

sbisimg, F X" (ret @q) (ret ),



F € whisimy, is similar, using reflexivity of Eaty,.
(2) By tower induction on the statement. For F € sbisimy; itis direct by case

analysis. For & € wbisimy,, use the fact that
ty Sctg = (f6) 1) S (f 1 9) ta)

where “($) is the one step unfolding of ($) operating on an exposed inter-
action tree.
(3) By tower induction on the statement. For F € sbisimy; it is direct by case

analysis. For & € wbisimy;, use the following fact.
ty Scty = (8 V=) S (ty "= f)

(4-9) By direct application of (1-3), using Theorem 2.36. ]

While perhaps not very impressive, the above lemma is very important. Points (4—
9) prove that return, fmap and bind are well-defined as operators on the quotients
of strategies respectively by strong and weak bisimilarity. But more importantly,
points (1-3) prove that one can reason compositionally during any bisimulation
proof. To relate two returns under any bisimulation candidate, simply relate their
output. To relate two sequential compositions (bind) under any bisimulation
candidate, it suffices to first relate the two head computations and then, point-
wise, the continuations.

Remark 2.62: This last fact (3) is sometimes called “bisimulation up-to bind”.
We can now see why it was important to construct bisimilarity not as fixed
points on a lattice of relations but on a lattice of pre-relators. Indeed, the
statement (3) makes use of the bisimulation candidate at two different output
relations X" and Y. If we were to use the lattice of family relations, the
output relation parameter of a bisimulation candidate would be fixed, making
the statement impossible to write. As it is done in the INTERACTIONTREE
library [93], only a weaker statement can be made, in which the head compu-
tations must be related by bisimilarity, instead of the bisimulation candidate.

Before turning to the monad and functor laws, let us revisit the property of

give its statement and proof. Intuitively, it states that whenever two “fmap-ed”
computations are related by some bisimulation candidate, then their inside com-
putation is actually directly related by the candidate, with a re-indexed output
relation.

Lemma 2.63 (Bisimulation Re-Indexing):
Given X: Container I, for any X":IRel X; Xy, f;:Y] =+ X, and
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[93] Li-yao Xia, Yannick Zakowski, Paul
He, Chung-Kil Hur, Gregory Malecha,
Benjamin C. Pierce, and Steve Zdancewic,
“Interaction trees: representing recursive

and impure programs in CoQ,” 2020.
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[53] Ugo Dal Lago, Francesco Gavazzo,
and Paul Blain Levy, “Effectful applicative
bisimilarity: Monads, relators, and Howe's
method,” 2017.

fo:Y, =+ X, and for any strong or weak bisimulation candidate

F € sbisimy, or F € wbisimy,, the following holds.
(fL®))FX (00 = F(fh) X ()

Proof: By tower induction on the statement. For € sbisimy, it is direct by

case analysis. For 7 € wbisimy,, use the following fact.

(fr 8 1) Sty = Tz, (B Sctz) Aty = (f V(9 t3) n

verifies that any strong bisimulation candidate is a monad relator for I Treey,, in
the sense of DAL LAGO, GAVAZZ0 and LEVY [53]. As such, we can in a sense
say that “up-to relator principles” are valid for strong bisimilarity, which is just
a precise way to say that standard compositional reasoning is allowed during
strong bisimilarity proofs.

The same is almost entirely true for weak bisimilarity, with the sole exception
of transitivity. As such, although weak bisimilarity is indeed a monad relator,
weak bisimulation candidates fail the generalized transitivity requirement.

We can finally prove the monad laws as well as coherence of fmap. We only prove
them w.r.t. strong bisimilarity, as this implies weak bisimilarity.

Lemma 2.65 (ITree Monad Laws):
Given X:[Treey, for all x: X4, t:[Treesy X4, f: X = [Treeyy Y,
g:Y = [Trees; Zand h: X —+ Y the following statements are true.

(1) (retx>=f)=fzx

(2) (t==rer) =t

(B) t=>=f)s=g=t=>=(f>=9g)
(4) (t 5= (rero b)) = (h (§) 1)

Proof:

(1) By one-step unfolding.

(2) By direct tower induction.

(3) By direct tower induction.

(4) By direct tower induction. [ ]

Remark 2.66: Note that as a direct consequence of the above lemma, we can

derive the usual properties of fmap, exhibiting I Treey, as a functor.

This concludes the monadic theory of interaction trees. We put a finishing touch
by introducing the so-called “do notation”. We write, e.g.,

rtys fzigy



instead of

t>= 0z fzs=0y—gy).

2.6 Iteration Operators

Interaction trees [93] were originally introduced to encode arbitrary—i.e., pos-
sibly non-terminating—computation. As such, apart from monadic operators,
they support iteration operators which intuitively allow one to write arbitrary
“while” loops. Pioneered by ELGoT in the setting of fixed points in algebraic
theories [36], iteration in monadic computations enjoys a vast literature. Recall-
ing that a monadic term @ : M X can be seen intuitively as an “M-term” with

variables in X, the idea is to define systems of recursive equations as morphisms
X > MY +X).
Assuming X := {xl}l <i<n and writing f; for f z;, this system is intuitively

S1 7 f1]Ty > 81, T > Sgy ey Tpy > 8]

So A fo Ty > 81,Tg > Sgy vy Ty > 8]

Sy A fply B> 81, T > Sgy wey Tpy > Syl

where each f; is an M-term mentioning any recursive variables x; : X or any
parameter y; : Y. A solution is then a mapping s : X — M Y assigning to each
“unknown” in X an M-term mentioning only parameters in Y. A solution must
obviously satisfy the original equation system, which in the monadic language

may be stated as follows.

inly FHrety

sx ~ T == .
f mrrt—=>sx

While the basic idea is simple, a number of subtle questions arise quite quickly
during axiomatization. Should all equation systems have solutions? Should the
solution be unique? If not, when some solution can be selected by an iteration
operator, what coherence properties should this operator satisfy? In fact, almost
all imaginable points in the design space have been explored, in an explosion of
competing definitions. The concepts have historically been organized roughly as

follows.
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[93] Li-yao Xia, Yannick Zakowski, Paul
He, Chung-Kil Hur, Gregory Malecha,
Benjamin C. Pierce, and Steve Zdancewic,
“Interaction trees: representing recursive

and impure programs in CoQ,” 2020.

[36] Calvin C. Elgot, “Monadic Compu-
tation And Iterative Algebraic Theories,”
1975.
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2017.
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4 N\
Iterative Things Every guarded equation system, i.e., eliminating prob-

lematic equations where some z; & x;, has a unigue solution. The following

variants have been defined (not all of comparable generality):

* iterative theories, for terms in finitary algebraic theories [36],

iterative algebras, for algebras associated to such theories [76],

completely iterative monads, for ideal monads, where there is a way to make

sense of guardedness [5].

completely iterative algebras, for functor algebras, with an adapted notion
of flat equation system [6],

Absence of the prefix “completely” denotes the fact that only finitary equa-

tion systems are solved.

s N

Iteration Things and ELcoT Things Every equation system has a choice
of solution, subject to coherence conditions. The following notions have

been defined:

* iteration theories, for terms in finitary algebraic theories [21],
* ELGOT algebras, for finitary functor algebras [7],

* Ercor monads, for finitary monads [8],

* complete ELGOT monads, for any monad [39].

The older “iteration” prefix requires only the four so-called CONWAY axioms
on the iteration operator, while the more recent “ELGOT” prefix denotes
the addition of the “uniformity” axiom. The prefix “complete” has the same

meaning as for iterative things.

More recently, several works have tried to unify the above two families, by
axiomatizing abstract guardedness criteria, for which guarded equations have a
coherent choice of solution [40][73]. This criterion may be syntactic as in the
first family, or vacuous (every equation is considered guarded) as in the second
family. The iteration operator may then be axiomatized to be coherent with
gradually more constraining notions of coherence. These coherences can be in the
style of iteration or ELGOT monads, and culminate in the strongest coherence,
the #nicity condition. For the type theory practitioner seeking a modern account,
I recommend in particular GONCHAROV et al. [40], which also features much

appreciated graphical depictions of all kinds of coherence laws.

The original INTERACTIONTREE library [93] has for now only be concerned
with an iteration operator solving arbitrary systems, which can be shown to verify
the (complete) ELGOT monad laws w.r.t. weak bisimilarity. As we will show,

this operator lifts without surprises to our indexed setting. However, unicity of



solution is quite a tempting principle even if it is not available for every equation
system, and our OGs correctness proof will crucially depend it. As such, we
will also present the iterative structure of indexed interaction trees, w.r.t. to two
notions of guardedness. First, the usual simple guardedness of ideal monads [40]
and second, a finer notion of eventual guardedness. It is to the best of our knowl-
edge the first time that this eventnal guardedness condition is presented, although
a similar idea is present in several proofs by ADAMEK, MIL1US and VELEBIL [8].

2.6.1 Unguarded Iteration

Let us start by lifting the standard unguarded iteration of interaction trees to our
indexed setting.

By implementing iteration operators we are tickling the limits of what can be
expressed in our metatheory using coinductive definitions. As such this section
and the following will contain a couple tricky functions, which have been tailored
to work well with RocQ’s syntactic guardedness checker. We try to comment
on each one, but some will surely remain mysterious. Let us start with such a

function.
Definition 2.67 (Exposed Copairing):
Given X : Container I define the following exposed copairing function.
“LAXY Z} (X = Treey, Z) — (Y = "[Treey, Z)
= (X +Y) = ITree, Z

out := r
“f.glri= inlz:=fx
inry:=gy

Remark 2.68: Note the exposed interaction trees in the codomain of f and
g above! Moreover, we do not directly case-split on 7 which would define the
function with two clauses. Instead, the idea is to be Jazy on the argument r and
only inspect it when the tree is observed, i.e., below out. Indeed, a general trick
to help satisfy guardedness is to copattern-match on out as early as possible,

i.e., use maximally lazy definitions.
This helper is enough to provide a clean definition of unguarded iteration.

Definition 2.69 (Interaction Tree Iteration):
Let X : Container I. Givenan equation f: X — ITreey, (Y + X), defineits
iteration coinductively as follows.
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2.6.1 Unguarded Iteration

iterp: X — [Treeq ¥

iterp @ := f o == "["ret, “tau o iter ]

Remark 2.70: It is quite a miracle that this coinductive definition is accepted.
In Rocq, it depends on two crucial tricks we have seen: the lazy copairing
and the bind operator defined with the continuation bound outside of the
coinductive definition. If either is skipped, the above definition is rejected. The
more robust way to define unguarded iteration would be to specialize the bind
operator, generalizing the above definition to

iter-auxy : [Treeyy (Y + X) — [Treeg ¥V

and then defining iter, x := iter-aux; (f o). This would however require
proving more properties, relating this specialized bind operator to the usual
one.

Lemma 2.71 (Iter Fixed Point):
Given X : Container I, forall f: X — I'Treey, (Y + X)), iter ; is a weak fixed
point of f, i.e., the following holds.

inly > rety

iterp o~ fa o= inr T b itery T

Proof: By definition itery z := f & == "['ret, "tau o iter|. As such, both

* For inl y, conclude by “ret”.

* Forinr x, eat the "tau on the left on conclude by reflexivity. [ |

Furthermore, we prove the following monotonicity statement for iteration.

Lemma 2.72 (Iter Monotonicity):
Given X : Container I, for all X7 : IRel X! X2 and Y7 : IRel Y1 Y2, the
following statements holds.

(1) iter (VX" =7 & Y47 X7 ) T (VX" 7 A YT ))) iter
(2) ter (VX" =T AL YT XT]) o (VX" o7 A YT ))) iter

Proof: The proof is by straightforward tower induction. Let us detail
it for strong bisimilarity. By tower induction, let us prove that for all
F € Tower the following holds.

sbisimgy

iter ((VTXT =7 F (YT 47 X)) o7 (VX" o7 FYT)) iter



The statement is inf-closed. Assuming the statement for F, let us prove it for

sbisimy, & . Introduce the hypotheses
Fre fLQITXT ST sbisimg F (YT 47 X7)) f2
" X" xl 22

We need to prove
iter f* ! (sbisimg, F YTY iter f2 22

By definition, both sides are given by binds, respectively starting by f* ! and
now suffices to relate the continutations pointwise.
* Forinl y, conclude by “ret” and reflexivity on y.

* Forinr &, conclude by “tau” and coinduction hypothesis. ]

We will not prove here that this iteration operator satisfies the requirements of
complete ELGoT monads. These properties could be useful for reasoning about
interaction trees constructed by iteration, but they are quite limited compared
to something such as uniqueness of solutions. The prime shortcoming of these
coherence properties, is that they are limited to rearranging equation systems.
As such, they are hardly useful to establish bisimilarity between an interaction
tree constructed by iteration and another one, constructed entirely differently.
Because such a bisimilarity proof will be at the cornerstone of our OGs correct-
ness proof, we need to look further into guardedness, the key to uniqueness of

solutions.

2.6.2 Guarded Iteration

A general trend in the research on iteration operators is the observation that, very
often, the unguarded iteration operator of, e.g., an ELGOT monad, may be shown
to somehow derive from an underlying guarded iteration operator enjoying
unique fixed points, with the former ELGOT monad typically being a quotient
of the latter iterative monad. With interaction trees, we find ourselves exactly in
this situation. Indeed, as we will see, every equation system is weakly bisimilar to
aguarded equation system. Our previous unguarded iteration operator can then
be recast as constructing the unique fixed point of this new guarded equation
system, up to strong bisimilarity*. Without further ado, let us define this guarded
iteration operator.

Definition 2.73 (Guardedness):
Let 3 : Container I. An action is guarded in X if it satisfies the predicate

‘guarded {X Y A4} : Actiony, (Y + X) A1 — Prop
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* In hindsight, it should not come as a
surprise that primitively only guarded and
unique fixed points exist. This is what
coinduction in our metatheory provides us
with. Because we work in a constructive
metatheory there is no place for doubt,
and to be accepted, any definition must pre-
cisely, ie., um'qm‘l}l, pinpoint some seman-
tical object. Itis rather tautological that any
definition must indeed define something!
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defined by the following constructors.

“rets : “guarded (“ret (inl y))

“taus : “guarded (“tau ?) “vise : “guarded ("vis g k)
Furthermore, an interaction tree is guarded in X if its observation is:

guarded {X Y i} : ITreey, (Y + X) 4 — Prop
guarded ¢ := “"guarded t.out .

And, finally, guardedness of equations is defined pointwise:

eqn-guarded {X Y} : (X = ITreeyy, (Y + X)) — Prop
eqn-guarded f =V {3} (z: X 1) — guarded (f z).

Before even constructing them, we can prove that fixed points of guarded equa-

tions w.r.t. strong bisimilarity are unique.

Lemma 2.74 (Unique Guarded Fixed Points):

Given ¥ : Container I and a guarded equation f: X — ITreey, (Y + X)),
for any two fixed points s, , 5 of f w.r.t. strong bisimilarity, i.e., such that for
allz and i = 1, 2 we have

inly Hrety

inrr k> s;x ’

s,z fa =

thenforallz, s; x = sy 2.

Proof: By tower induction, assume a strong bisimulation candidate F such
that

Vao—F A" (s12) (89 1)

and introduce the argument z. After rewriting (using up-to transitivity,

inly > rety
(fﬂ; = [inrfc = Sy x)

{sbisimg, F A™)

inly b rety
(f:L' - [inr:c = Sq $)

By inspecting the first step of f x, by guardedness we obtain a synchronization

and it now suffices to prove that for some tree ¢ the following holds.



inly > rety r inly Hrety
(t - {inrm = 8 a:) (727 (t - [inra: =Sy T

proven by reflexivity and the second by coinduction hypothesis. n
Let us now construct this unique fixed point.

Definition 2.75 (Guarded Iteration):

Let X: Container I. Given an equation f: X — ITrees; (Y + X) with
guardedness witness H : eqn-guarded f, first define the following guarded
unfolding function.

gstepy g (ITreesy (Y + X) = [Treeg V) — (X — "TTrees V)
gstepy g g T += (fz).out | Hz

("ret (inly)) p :="rety

("ret (inrz)) (1)

(“tau t) p ="tau(gt)

(“visgk) p =Wisq(\rg(kr))

We then define the following coinductive auxiliary function.
g—itcr}i}l :ITreey, (Y + X) = ITreey, YV
giteryg ti=1 >= Y['ret, gstepy g g«itcr}‘:}l]
Finally, we define the guarded iteration as follows.
gritery e X = ITrees, Y
gritery g x = g—itcr}“}_[ (f=)
We will omit the guardedness witness H when clear from context.

Remark 2.76: While a bit scary, the above definition of g-step is simply
mimicking the first step of a “bind” on f x, delegating the rest of the work
to its argument g. Thanks to the added information from the guardedness
witness, it is able to only trigger subsequent computation in a guarded fashion.
This can be seen from its type, as it returns an exposed interaction tree. Recall
that for unguarded iteration, this same guardedness was achieved artificially,

by wrapping the whole call in a silent step.

Because of this one step of observing on f x, the subsequent computation will
be triggered on an arbitrary ¢ : [Trees, (Y + X)) i, instead of something of the
form f . Hence the coinductive knot must be tied with such a generalized

argument, as is done in g-iter*™.

2.6.2 Guarded Iteration
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Theorem 2.77 (Guarded Fixed Point):
Let X : Container I. For any guarded equation f: X — I'Treey, (Y + X)),

g-iter ¢ is the unique fixed point of f w.r.t. strong bisimilarity.

bisimilarity, it suffices to show that it is indeed a fixed point, i.e.,

inly > rety

giterpa &= fa ==\ 0 gitery @

“ret”. For 7 := inr x, we need to prove the following.

aux

(g«stcpf gritery m).out Sy (g-iterf m).out

Both sides can be seen to start by observing (f x).out so let us case split.

* ‘ret (inly)  Conclude by “ret” and reflexivity.
* ‘ret (inrz)  Absurd by guardedness hypothesis H .
* ‘taut  Conclude by “tau” and reflexivity.

* “visgk  Conclude by “vis" and pointwise reflexivity. [

We have thus exhibited interaction trees (considered up to strong bisimilarity) as

a completely iterative monad. Let us now link this to unguarded iteration.

Lemma 2.78:
Given X : Container I and an equation f: X — ITreey, (Y + X))

(1) Assuming f is guarded, for all z, g-iter; @ ~ iter; .
(2) Let f’ = := f == ("tau | "ret). Then, f’ is guarded and for all z,

itery @ & g-iterpr .
Proof:
(1) By tower induction, assume a weak bisimulation candidate F such that

the statement holds and let us prove it for whbisimy, . Introduce & and
rewrite the LHS by the strong fixed point property so that the goal is now

inly > rety
(f T 2= [inr T g»iterf x)
{whisimg F A™)

(f  >= “['ret, “tau o itcrf])



Both sides start by observing f x. By case analysis, refute the problematic
case using the guardedness hypothesis on f and exhibit a synchronization
guard (“ret”, “tau” or “vis") in the other cases. Both sides still continue to
the continuations pointwise w.r.t. . For inl y conclude by reflexivity. For
inr z, eat the "tau on the right and conclude by coinduction hypothesis.
(2) Forany z, by case analysis on (f «).out we can show that f’ z is guarded.
Then, by direct tower induction, following approximately the same proof

pattern as (1), without eating the "tau at the end. |

2.6.3 Eventually Guarded Iteration

Equipped with this new guarded iteration, we finally obtain our powerful
uniqueness of fixed points. This principle will provide us with a bighammer, very
useful for hitting nails looking like g-iter; x 2 ¢ z. However, being guarded is
quite a strong requirement! Notably, our equation of interest in this thesis, the
one defining the composition of OGs strategies and counter-strategies, has no
hope of being guarded. However, observe that if the equation contains a finite
chain

Xy > ret (inr z5)
Xy > ret (inr z4)

z, =t

n

such that ¢ is guarded, then after unfolding the equation n times, z; will be
mapped to a guarded tree ¢. The iteration starting from z; is then still uniquely
defined. This was already noted by ADAMEK, MILIUS and VELEBIL [8] with their
notion of grounded variables. However, a clear definition and study of equations
containing only grounded variables, or eventually guarded equations as we call
them, is still novel to the best of our knowledge. In fact, in future work it might
be fruitful to consider this in the setting of GONCHAROV et al. [40], as a generic
relaxation of any abstract guardedness criterion.

Definition 2.79 (Eventual Guardedness):
Let ¥ : Container I and f: X — ITrees, (Y + X). An interaction tree is
eventually guarded w.r.t. f if it verifies the inductive predicate

ev-guarded, {i} : "[Treeg, (Y + X) 4 — Prop

defined by mutually with the following shorthand

2.6.2 Guarded Iteration 67

[8] Jiri Addmek, Stefan Milius, and Jirf
Velebil, “Equational properties of iterative
monads,” 2010.
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2017.
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ev-guardedy {4} : [Trees; (Y + X) 4 — Prop

ev»guardedf t:= “ev»guardedf t.out
and whose constructors are given as follows.

p: "guarded ¢ p: ev-guarded; (f )

“ev-guard p: “ev-guarded ¢ “ev-step p : “ev-guarded (“ret (inr x))

An equation is eventually gnarded if it is pointwise eventually guarded w.r.t.
itself.

eqn-ev-guarded {X Y} : (X — ITreey, (Y + X)) — Prop
eqn-ev-guarded f:=V {i} (z: X i) = ev-guarded; (f )

As for guardedness, we can show unicity of fixed points w.r.t. strong bisimilarity
of eventually guarded equations.

Lemma 2.80 (Uniqueness of Eventually Guarded Fixed Points):
Given ¥ : Container I and f: X — ITrees, (Y + X) such that f is eventu-
ally guarded, for any fixed points g and h of f w.r.t. strong bisimilarity, for all

z,wehavegx =~ h x.

Proof: By tower induction, then by induction on the eventual guardedness
proof, repeatedly rewriting both sides by the fixed point equation to exhibit a

synchronization point. [ |

To construct an eventually guarded fixed point, we reduce the problem to
computing a guarded fixed point. Indeed, any eventually guarded equation can

be pointwise unrolled into a guarded one.

Definition 2.81 (Unrolling):
Let X: Container I. Given f:X — ITreey; (Y + X) and eventually
guarded t w.r.t. f, define the unrolling of t as the following inductive definition.

unrolly {i} (t: "ITreeyy (X +Y) 4): "ev-guarded; t — "TTrees (X +Y) 4

unrolly (“ret (inl @)) (“ev-step p) := unroll; (f x).outp

unroll ¢ (“ret (inry)) p = "ret (inr y)
unroll ¢ (“tau t) P = "taut
unroll ¢ (“visqgk) p = "visq k

Moreover, define the following pointwise unrolling of f.
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eq-unrolly : eqn-ev-guarded = (X = [Treey, (Y + X))
equnrolly H  := [out := unrolly (f z).out (H z)

Lemma 2.82 (Unroll Guarded):
Given X: Container I and f: X — [Trees; (Y + X) such that
H : cqn-ev-guarded f, then eq-unroll; H is guarded.

Proof: By direct induction. [ |
We can now define our candidate fixed point by using the guarded iteration.

Definition 2.83 (Eventually Guarded Iteration):
Given X: Container I and f: X — [Trees; (Y + X) such that
H : eqn-ev-guarded f, define the eventually guarded iteration of f as follows.

ev-itery g : X = [Treey Y

CV—lth'f’H = g_ltcruq—um‘o\] fH

It now remains to verify that this construction is indeed a fixed point of f, as for

now we only know that it is a fixed point of the unrolled equation.

Theorem 2.84 (Eventually Guarded Fixed Point):
Given ¥ : Container I and f: X — ITrees; (Y + X)) such that f is eventu-
ally guarded, then ev-iter; is the unique fixed point of f w.r.t. strong

bisimilarity.

pointwise strong bisimilarity, so it suffices to prove that ev-itery is a fixed
point of f. This is proven by induction on the eventual guardedness witness
and repeated one-step unfolding on both sides, appealing to the guarded fixed
point property on the base case. [ ]

Once again, we further relate the eventually guarded iteration of an equation with
its unguarded iteration.

Lemma 2.85:
Given X: Container/ and an eventually guarded equation

f: X = ITrees; (Y 4+ X), then forall z,

cv-itcrf xr ~ iterf x

Proof: By direct tower induction, then by induction on the eventually guard-
edness witness. For the step case, eat the "tau on the right and conclude by
induction hypothesis. For the base case proceed by analysis of the guardedness
witness, exhibiting a synchronization point, then further eat the "tau on the

right and conclude by coinduction hypothesis. n
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This concludes not only our study of iteration operators, but this whole chapter.
We now have enough base theory on games and strategies, both represented as
transition systems or as indexed interaction trees. Our last theorem, unicity of
eventually guarded equations, will provide us with the core coinduction proof
technique to obtain OGs correctness. Although we will stop referring to them
at every single step, the bunch of compositional reasoning principles proven
throughout the last few section will also be instrumental in achieving flexible

reasoning on complex game strategies.



A Categorical Treatment of
Substitution

Our generic OGs construction depends mainly on two broad technical fields:
games and programming language syntax. Since we clarified games in the previous
chapter, it is now left to provide the same technical grounding for syntax. While
syntax might seem like already well-known, the details of working formally with
syntactic objects are more subtle than they seem.

Being close topics, programming languages and type systems are routinely stud-
ied by type theory practitioners. As such, the concrete matter of how to encode
and work with syntactic terms of an object language inside type theory has been
widely researched, for example in the various submissions to the first PoPLMARK
challenge [18]. There are two main design points: how to represent variables
and bindings, and how to enforce typing. My inclination towards correct-by-
construction programming, that is, enforcing as much invariants as possible
inside data structures using dependent typing, makes it a natural choice to use
the type- and scope-safe, or intrinsically typed and scoped representation of syntax.
Quoting F1oRrE and Szamozvancev [37],

“We believe that the nameless, intrinsic representation is hard to surpass
in dependently-typed proof assistants thanks to its static guarantees on the

typing and scoping of terms.”

In this setting, the sort of terms is indexed both by a scope (or typing context)
and by a type, so as to form a family Term : Scope — Ty — Type. This indexing
may then be used to enforce that only well-typed terms are represented and that
all the mentioned variables are in scope.

An important specificity of the point of view we will adopt in this chapter is to
be completely silent on the actual construction of the syntax. Indeed, as our goal
is to formalize a (reasonably) language-generic OGs construction, we will only be
interested in specifying what operations a syntax should support and leave open
the choice for actual instantiation. Crucially, we will not assume any kind of
induction principle and keep the syntax opaque. Surely it can be debated whether
or not something which is not inductively defined deserves to be called a syntax,
and indeed our generic OGs construction could very well be instantiated not by
syntax but by some other denotational model of a language. However, for clarity,
we will keep using syntactic terminology.

We start in §3.1 with a short informal overview of the core points of the intrinsic

representation and the axiomatization of substitution. This overview largely fol-

[18] Brian E. Aydemir ez al., “Mechanized
Metatheory for the Masses: The PoplMark
Challenge,” 2005.

[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-

der abstract syntax,” 2022.
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[13] Guillaume Allais, Robert Atkey, James
Chapman, Conor McBride, and James
McKinna, “A type- and scope-safe universe
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and proofs,” 2021.

[44] André Hirschowitz and Marco Mag-
gesi, “Modules over monads and initial
semantics,” 2010.

lows two comprehensive papers with beautifully crafted AGpa implementations
which I heartily recommend reading [37][13]. The main point is the introduc-
tion of substitution monoids, which axiomatize type- and scope-indexed families
supporting variables and substitutions. In §3.2, we motivate and introduce a small
contribution. In typical type theory formalizations, the notion of scope is fixed
in the abstract theory of substitution and defined as lists of types, but this rigidity
can be cumbersome for some languages. This is remedied by providing a simple
abstraction for scopes. Finally, in §3.3, we adapt the definition of substitution
monoid to this new abstraction. We also present substitution modules, a notion
required to deal with syntactic objects which have a substitution operation, but
whose arguments may be of a different kind, such as evaluation contexts, whose
variables can be substituted by values. Substitution modules have already been
studied [44], but they are rarely presented even though they become necessary

quite quickly in lots of concrete examples.

3.1 The Theory of Intrinsically-Typed Substitution

Remark 3.1: The following section will consist in an informal overview. As

such every introduced notion will be properly defined later on.

Contexts  The type- and scope-safe approach starts by defining typing
contexts as lists of types (written backwards, for consistency with the traditional
notation of sequents) and variables as dependently typed DE BRUN indices, in

other words, proof-relevant membership witnesses:
Cux (T : Type) : Type :=
[e: CxT

DL CxT —-T —Cx T

O T} Cx T —» T — Type =

[top{Ta}: (T»a)>a
lpop{Tap}:Toa—=T»B)>a

The main category of interest for syntactic objects is given by scoped-and-typed
families Cex T — T — Type. Variables given by ., > _, are already such a family,
but so too will be terms, and more generally “things by which variables can be
substituted”.

Next, renamings are defined as type-preserving mappings from variables in one
context to variables in another, turning the set Ctx T' into the category € T.
Instead of just variables, the codomain of these renamings can be generalized

to any scoped-and-typed family X, yielding the notion of assignment. More
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precisely, given two contexts I', A : Ctx T, an X-assignment from I' to A is a
type-preserving mapping from variables over I' to X-terms over A.

' (Xl A=vV{a}>T>a—>XA«
FrcA:=T-]2A

Remark 3.2: As contexts are finite, assignments are maps with finite domain,
and may thus be tabulated and represented as tuples. The tuple representation
makes intensional equality of assignments better behaved. However as other
parts of my Rocq development already depend on extensional equality, I will

not shy away from the pointwise extensional equality of functions.

Although it does have this issue, the representation of assignments as functions
has other benefits. Thanks to the n-law renamings as defined above construct
astrict category, where all the laws hold w.r.t. definitional equality. This would
be lost when working with tabulated representations.

Remark 3.3: When computational efficiency is a concern, another typical
choice is to define a more economic subcategory of contexts, whose renamings
consist only of order-preserving embeddings (OPE). An OPE can be compu-
tationally modeled by a bitvector, where a 0 at position % means that the ¢-th
variable is dropped while 1 means that it is kept. However as computational
efficiency is not our prime concern, we will not go down this route. Still,
we keep this idea around, borrowing and slightly abusing the notation C for
renamings, which is traditionally associated with embeddings.

Substitution Monoids It is now direct to express that a given scoped-and-
typed family X has variables and substitution. First, variables must map into X.
Second, given an X-term over I" and an X-assignment from I to A, substitution
should return some X-term over A. In other words, X must admit maps of the

following types.

var{Ta}: T5a— XTa
sub{TAa}: XTa— (I {X>A) > XA«

This structure is dubbed a substitution monoid [37] and is further subject to the  [37] Marcelo Fiore and Dmitrij Szamoz-

usual associativity and left and right identity laws. vancey, “Formal metatheory of second-or-

der abstract syntax,” 2022.
sub (vari) y =i
sub x var = x

sub (subz ) 6 =subz ()i sub (y1i) d)

To explain how these two maps can be seen as the unit and multiplication maps

of a monoid, notice that their types may be refactored as
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[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.

[14] Thorsten Altenkirch, James Chap-
man, and Tarmo Uustalu, “Monads Need
Not Be Endofunctors,” 2010.

[89] Kornel Szlachdnyi, “Skew-monoidal
categories and bialgebroids,” 2012.

[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.

var: .5, —+ X
sub: X =+ [ X, X]

where [, ] is the following snternal substitution hom functor [37].
[XY|[Ta=V{A} T (X A->Y A«

Further note that for any scoped-and-typed family X, the functor [X, | hasa
left adjoint , © X, the substitution tensor product [37], given by

(XOY)Ta=(A:CxT)x X Aax A Y} T.

This substitution tensor exhibits scoped-and-typed families as a skew monoidal
category [14][89] with unit 5. Being skew monoidal is slightly weaker than
monoidal, as the left and right unit laws as well as associativity laws on the tensor
product are not true w.r.t. isomorphisms, but w.r.t. morphisms in one direction.
By adjointness, the substitution map could be alternatively written with the
isomorphic type

sub: X O X = X.

Thus, although we prefer using the internal substitution hom presentation which
gives a much more easily manipulated cu#rried function type to substitution, from
amathematical point of view, substitution monoids are precisely monoid objects
in the skew monoidal category (Ctx T — T — Type, 3, O).

Renamings  Let us finish this overview of the state of the art with a notable
recent insight on the type-theoretical presentation of the operation of renaming.

In the categorical approach, it seems particularly obvious to formalize that a
family X : Ctx T — T — Type supports renamings if it is functorial in the
firstargument, i.e., if it extends to a functor € T — T — Type. In fact, as is cus-
tomary in category-theoretic presentations, all of the above theory can be recast
in the functor category, entirely eliminating families zot supporting renamings.
However, as shown by folklore practice in the dependently-typed community,
and stressed by FIORE and SzamozvaNCEV [37], working solely in the functor
category is problematic as it crucially requires to work with quotients. Essentially,
the reason is that when constructing the syntax, one can /mplement renamings
by induction on terms. This implementation does not appeal to the automatic
renaming operation that exists by virtue of working only with functors. As such,
we are left with two renaming operations, and quotients are necessary to make

sure they coincide.

The trick to provide a theoretical account of the renaming operation while
avoiding functors is to notice that the faithful functor
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(€T —-T — Type) » (Cex T — T — Type)
is comonadic, with associated comonad given by OX := [> ,X], ie.,
OXTa:=V{A} 5 (TCA) - XAa.

In plain words, families supporting renamings, i.e., functors € T' — T — Type
can be equivalently seen as families with a [J-coalgebra structure [13][37]. This

coalgebra structure exactly gives the renaming map, expressing it as
ren: X = OX.

This is obviously an after-the-fact theoretical reconstruction of the familiar oper-

ation of renaming and indeed matches the obvious type

ren{TAa}: XTa—-TCA—-XAa.

Every substitution monoid induces such a renaming coalgebra structure since
renamings can be implemented by substitution with variables. However, the
typical implementation of substitution on a syntax with binders requires readily
available ren and var operations to allow substitution to go under binders. This
package of renamings and variables can be formalized as a pointed coalgebra struc-
ture [37] and its compatibility conditions with a substitution monoid structure
are straightforward.

3.2 What is a Variable? Abstracting DE BRunyN Indices

While theoretically a sound choice, defining contexts as lists of types and variables
as DE BRUDJN indices is practically unsatisfactory. Perhaps the most convincing
reason is that storing sequences as singly-linked lists and membership proofs as
unary numbers is not computationally efficient. When efficient execution is a
concern, one typically chooses an off-the-shelf finite map data structure such as
binary trees, which enjoy logarithmic time lookup and logarithmic size member-

ship proofs.

Although I like to imagine that my Rocq development makes sound computa-
tional choices, I must admit that I have not yet been truly serious about efficiency.
But there is a more type-theoretical objection to lists and D BrRUIJN indices:
while all free monoid constructions are isomorphic (extensionally equal) to lists,
there are situations where some are much more practical to manipulate than
others.

The prime example is the following setting. We have a set of types T" and we

construct some syntax lerm: Ctx T' — T — Type. Now for some reason, we

[13] Guillaume Allais, Robert Atkey, James
Chapman, Conor McBride, and James
McKinna, “A type- and scope-safe universe
of syntaxes with binding: their semantics
and proofs,” 2021.

[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.
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* This situation is not entirely artificial
and does in fact appear routinely in OGs
instances. Indeed, the scopes tracking the
shared variables of both players are usually
restricted to contain only the types of some
kind of non-transmitted values, typically

called negative types.

have asubset + : T' — Prop of let’s say, nice types, and we need to work with the
sub-syntax of terms in nzce contexts, that is in contexts containing only nice types.
Assuming we have worked out the theory of substitution for bare terms, we want
to lift it to the nice setting®.

In the framework of lists and DE Bru1jN indices, we must define nice contexts as

lists of pairs of a type together with a proof that it is nice:
T i=(a:T) X +«
Cx"' T:=CxT

To lift the syntax into a néce syntax Term ™ : Cex ™ T = T — Type, we set
Term* T'a := Term {T' Ja

where | is overloaded both as Ctx ™ T' = Ctx T"and asT'" — T, downgrading
nice things to their underlying bare object.

Assuming the bare syntax supports variables with the operator

var: ' 5 a = Term T o,

we can lift it to the nice syntax as follows using a suitable downgrade on variables,
oftype' 5 o = |I' 5 |

var 'S a— Term TN

var' 4 := var |4
Now to lift substitution our goal is to define

sub": Term" Ta— T [ Term™ | A = Term ™ A a.

This is almost but not quite the following instance of our already defined bare
substitution

sub: Term {I' Lo = I’ | Term |- JA — Term A la.

The culprit is the assignment argument. Spelling out the two assignment types
completely, we have respectively nice assignments of sort

{a:T"} 5T 5 a— Term |A |a
and bare assignments at downgraded contexts of sort
{a: T} - |II' 5 a — Term [A a.

One can already feel that things are going south: to downgrade the former into
the latter, we are given a bare type a and a membership proof in a downgraded

nice context? : [I" 5 a,and to apply it to the nice assignment we need to upgrade
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this into a niceness witness p : + o and a membership proof in the original nice
contextI' 5 (a, p). Thisis perfectly doable as indeed the following isomorphism
holds

I'sa=({: +a)xT > (a,p),

but I will stop at this point. It is in some way satisfying, but quite exhausting,
to play the upgrade-downgrade yoga on variables which is required to finish the
definition of sub ", and then to prove the substitution monoid laws (which I have

for now only alluded to).

The way out of all this administrative type shuffling is to notice that our definition
of Ctx™ T completely misses the point that nice contexts are a subset of contexts.
Indeed a more practical definition in this situation would have been as pairs of a

context together with a proof that it contains only nice types.
Cex" T:=(T:CxT) x All 4T,
where the All predicate lifting can be defined as

All: (T — Prop) — (Cex T — Prop)
AlPT:=V{a} 2T >a— Pa.
This makes downgrading nice contexts easier, but the prime benefit of this change
is in the definition variables.
O L Cod ' T =T = Type
I'>" a:=T.fst 5 a.fst
As variables now disregard niceness, all of the upgrade-downgrade yoga vanishes.
In fact lifting the substitution monoid structure to the nice terms is now mostly

a matter of n-expanding all the fields, and the hard work is taken care of by

unification.

var’ 4 :=vari

sub" {T}zy:=subz () {a} i v{a,Tsndi} i)

The conclusion of this small case study is that although our two definitions of
nice contexts are Zsomorphic, they are by no means equivalent in term of ease of
use. Because I believe it is important to build abstractions that people will actually
willingly instantiate in their particular case of interest, it becomes necessary to
provide some breathing room in the concrete definition of contexts and crucially

in their notion of variables.
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Notice that we do not ask for a singleton
scope [ ]: T — S which would embed
types into scopes. This operation is not part
of the core theory, but may be easily added
in applications other than Ogs for which it
is required.
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137.

[71] Conor McBride and James McKinna,
“The view from the left,” 2004, §6, pp. 98—
102.

[12] Guillaume Allais, “Builtin Types
Viewed as Inductive Families,” 2023.

3.2.1 Abstract Scopes

So what is a scope, if not a list? For our purpose very little is needed. We will
only need to know about an empty scope, a concatenation operation on scopes
and a definition for variables. More precisely, given a set of object language types

T : Type, a scope structure on aset S : Type consists of

(1) adistinguished empry scope & : S,

(2) abinary concatenation operation,, # ,: S — S — S,

(3) and a family of variables ,> ,: S — T — Type,

(4) such that the empty scope has no variable: & 5 t ~ L,

(5) and such that the set of variables of a concatenation is the coproduct of the
sets of variables: (I' 4+ A) >t~ ('3 t) + (A 2 ¢).

To formalize the two isomorphisms, we will not take the route of axiomatizing
two maps, forward and backward, which compose to the identity. First remark
that by initiality of |, it suffices to have the forward direction @ > ¢t = | to
obtain the first isomorphism (4) in full.

For the second isomorphism (5), taking hints both from Homotopy Type
Theory [83] and from the vzew methodology [71][12], we will axiomatize only
the backward map and ask that its fibers (sets of preimages) are contractible, i.c.,
inhabited by exactly one element. This will make the isomorphism much easier
to use, enabling inversions by a simple dependent pattern matching instead of

tedious equational rewriting.

Remark 3.4: Let us quickly see why contractible fibers are of practical interest.
The fibers of a function f can be encoded in type theory by the following
family.

a: A

Fiber {A B : A — B): TypeB
4537 ): T fib a: Fiber f (f a)

Then, given a function f : A — B and a proof that its fibers are inhabited
inv: (b: B) — Fiber f b,

in any proof with a variable b : B in scope, we can do a dependent elimination
on inv b. This will introduce an a : A and magically unify b with f a, clearing
b from the scope. It is for example trivial to obtain an left-inverse to f, given

by get o inv as follows.
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left-inv (b: B): f (get (inv b)) = b

get {b} : Fiber f b— A left-inv := D b
get (fiba) :==a [fib a := refl

From an additional proof that every element of the fiber x : Fiber f bis equal
toinv b

H:V {b} (x: Fiber fb) - x =inv b,
itis again not much work to obtain the right-inverse property, recognizing that
by definition get (fib a) = a

right-inv (@ : A) : get (inv (f a)) = a

right-inv @ := congr get (H (fib a))

As the domain of the backward map of the isomorphism in (5) has as domain a

sum type, I will axiomatize it implicitly as the copairing of two simpler maps:
V{t} T3t T+ A)>t
V{t} >A>3t— (T4 A) >t
which are respectively definitionally equal to more concise notations
I C(T+#A)
AC(T+ A).

The fibers of the copairing of two maps can be more directly characterized by the
following data type.

SumView (f: A— C) (g: B— C): C — Type

i: A j: B
v-left i : SumView f g (f 1) v-right j: SumView f g (g j)

We are now ready to give the definition of abstract scope structures.

Definition 3.5 (Abstract Scope Structure):
Given S,T : Type, an abstract scope structure on S over T' is given by the

following typeclass, mutually defined with a notation for renamings.
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[80] Nicolas Pouillard, “Nameless, pain-
less,” 2011.

Scopeq S =

F: 8

CH L S=85—>S

O 8= T — Type

view-emp {t} (i: @ >t): L

rcaty {T A}: T C (T' 4 A)

rcat, {L A}: A C (T 4 A)

view-cat {T' At} (i: (T # A) 3 ¢): SumView r-cat; r-cat,. ¢
view-cat-eq {T' At} {i: (T' 4 A) 3¢} v: view-cat i = v

LCLt S =8 = Type
FCA:=V{t}>T>5t—>A>t

Note that the mnemonic “cat” in the above stands for concarenation (and not

for category).

Definition 3.6 (Scope Category):
A scope structure Scopep S defines a category of scopes € g whose objects are
given by S and whose morphisms are given by renamings I' C A. In other

words, C g is the full image of |, >.

Remark 3.7: Note that in the definition of abstract scope structures, the set T
plays almost no role, being only used to form the family category T — Type
in the sort of 3. In future work I believe to be particularly fruitful to replace
T — Type with an arbitrary suitably well-behaved category A, i.e. axiomatiz-
ing variablesas _ >: S — A.

In particular A := Type provides a more satisfying account of untyped calculi
than setting T" := 1, ie. A := 1 — Type (asis currently required). In general,

it would allow much more flexibility in choosing the sort of term families.

Remark 3.8: Our definition of abstract scope structure is quite close in spirit
to the the nameless, painless (NAPA) abstraction of PoUILLARD [80]. Their
notion is only concerned with untyped scopes and variables, but this is only
a superficial difference as their theory could certainly be lifted to indexed
settings, or ours lowered as sketched in the previous remark. Apart from this,
the actual difference is twofold.

First, they focus on extending scopes by one variable on the right, whereas
we axiomatize arbitrary concatenation. We believe that such single variable
extension is an accident of the typical lists and DE-BRUIJN indices, and that
it is more practical to abstract over a more symmetric core operation, namely

binary concatenation. This leads to a rather more concise axiomatization of the



laws, and to an easier instantiation of the structure in cases where extending

on the right is not the natural primitive operation.

Second, they further axiomatize a notion of scope inclusions, whereas we
derived C as functions from variables to variables. Again, this leads to their
addition of several more laws and coherence conditions. These essentially state
that scopes and inclusions form a category and that > is functorial. Because we
decreed that the category of scopes is given by the full image of 3, every single
such law is true definitionally.

This axiomatization of scopes is enough to derive the two isomorphisms describ-

ing the variables of our scope operations:

gat~r L
CTHA)>t= T2t +(A>¢)

In particular, this entails that r-cat; and r-cat,. are both injective and have disjoint
images. In fact, assuming an abstract scope structure Scopeg T, the category € g

is cocartesian, with the initial object & and the coproduct given by -.

Before moving on to the theory of scoped-and-typed families and substitution
monoids, let us reap the benefits of this new abstraction and conclude with some

instances of abstract scopes.

3.2.2 Instances

Concrete Scopes  Lists and DE BRUIJN indices are the obvious first instance,
which we call concrete scopes. Concatenation is computed by induction on the
second (right-hand) context:

D Cx T - Cox T — Cex T
I'»e =T
L» (Ara)=T»A)»ra

I will not provide the full instantiation of the scope structure, suffice it to say that
statements about concatenation are proven by induction on the second context
argument. Notably, I believe that proving the contractibility property of the
fibers of the coproduct injections (view-cat-eq) requires the use of STREICHER’s

axiom K, although I am not entirely sure about this.

Definition 3.9 (Concrete Scopes):
Given T : Type, concrete scopes Ctx T have an abstract scope structure with

types T given by the following (incomplete) definition.

3.2.1 Abstract Scopes
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3.2.2 Instances

CtxScoper :=

Pay attention to the difference between = and 3! The former denotes the family
of concrete DE-BRUIJN indices, while the latter denotes the abstract variables of a
scope structure instance. I apologize for this abuse of notation to the color blind
reader. In any case the symbol 3 can without any loss be considered to always
denote the abstract notion of variable. In the concrete case it will be definitionally
equal to DE-BRUIJN indices. Further note that this symbol is entirely different
to €, which we used to denote predicate membership proofs, i.c., a specialized
notation for reverse function application. The latter will be used very rarely from

this point on.

Subset Scopes  We can now revisit our introductory example motivating the
notion of abstract scope structures: subset scopes. Given an abstract scope structure
C': Scopeq S, define the following (strict) predicate lifting.
Allg: (T — SProp) — (S — SProp)
Allg PT:=V{a}>T5a—Pa
We define the subset type of elements of x satistying P x, i.e., the fotal space of
the predicate P as follows.
[{X : Type}: (X — SProp) — Type
J/JP:=(z:X)x Pz
Definition 3.10 (Subset Scopes):
Given an abstract scope instance Scope S and a predicate P : T' — Prop, the

type [(Allg P) of subset scapes bears an abstract scope structure on types [P,
given by the following (incomplete) definition.



SubScope : Scopep [(Allg P)

SubScope :=
& | st o=
" |sndi:= (view-emp %) [

fst := I'.fst %Jr A fst

snd E (view-cat %)
T4 A= leftd :=T.sndd

\ 11oht] = Ausnd i

I'sa :=T.fst 2 a.fst

Direct Sum of Scopes Languages exist in various shapes and forms, and
sometimes the designers deem it useful to have zwo kinds of variables, stored in two
different scopes. We can capture this pattern as the direct sum of abstract scope
structures.

Definition 3.11 (Direct Sum Scopes):

Given two abstract scope instances Scopeq, Sy and Scopeq, S, the type
S, x 8y of direct sum scopes bears an abstract scope structure on types Ty + T
given by the following (incomplete) definition.

SumScope : ScochlJrT2 (S; < Sy)

SumScope =

%] = (7, D)

4 A = (T.fst # A.fst,snd 4 A.snd)
I'sinla:=Tft>

I'>inra:=T.snd > «

Untyped Scopes  An untyped syntax can always be made to fit into a typed
setting by seeing it as unityped, i.e., where the set of types is given by the singleton
1, but it is not zhat simple. Setting T" := 1 and going on working with e.g.,
concrete scopes Ctx 1 and DE-BRuIJN indices is slightly unsatisfying. First of all,
Ctx 1isisomorphic to the more idiomatic N and likewise, the corresponding DE-

Coel are isomorphic to Fin : 'l‘ych, the finite sets.

BruynN indices > % : Type
Apart from these esthetical considerations, a more worrying technicality arises
when your chosen type theory does ot support the n-rule on 1. This law is
quite important as it makes all inhabitants of 1 definitionally equal, and, more
importantly, all function f : 1 — X definitionally constant. In the idealized type
theory chosen for this thesis we do assume this n-rule, but our concrete code

artifact is stuck with a theory which does not (Rocq!).

3.2.2 Instances
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Note that we swap m and 7 in the defini-
tion of m 4 n. The reason for this is that
scopes are traditionally taken to grow to-
wards the right, while unary natural num-
bers grow towards the left, i.e., addition is
defined by recursion on the first argument.
This is technically unnecessary but helps

avoid unpleasant surprises during index

juggling.

Recall the definition of finite sets Fin : 'I‘ych.

1: Finn

ze: Fin (sun) sud: Fin (sun)
Further define the following helpers.

fin-weaken {m n} : Fin m — Fin (m 4+ n)

fin-weaken ze 1= ze

fin-weaken (sut) := su (fin-weaken )

fin-shift {m n}: Fin n — Fin (m + n)

fin-shift {ze} i:=14

fin-shift {sum} % := su (fin-shift {m} 7)

2

Finally define untyped scopes as the following instance of scope structure.

UntypedScope : Scope; N

UntypedScope :=
%) = ze
m4irn:=n—+m
n>zx :=Fnn
r-cat; ¢ := fin-shift ¢
r-cat, ¢ := fin-weaken ¢

We will use concrete scopes in Ch. 4, and subset scopes will make an appearance
in Ch. 7 but the other instances are mostly here for illustration.

3.3 Substitution Monoids and Modules

Equipped with this new abstraction for scopes, we are ready to continue the the-
ory of substitution. This will largely follow the now standard approach outlined
in §3.1. We will however introduce one novel contribution: substitution modules.
Let us start with scoped families and assignments.

Definition 3.12 (Scoped-and-Typed Family):
Given S, T : Type, the set of scoped-and-typed familiesis given by the following
sort.

SFamp §:=8 — T — Type
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Scoped-and-typed families form a category with arrows X — Y lifted point-

wise from Type.

Definition 3.13 (Assignments):
Assuming a scope structure Scopep S, given a scoped-and-typed family
X : Type®T and T, A 1 S, the set of X-assignments from T to A is defined as

follows.

LAX L S = S = Type

I { Xl A:=V{a}=>T'sa—- XA«

As seen in § 3.1, because assignments are represented as functions, we

will use of extensional equality on assignments at several places. Given

v,0: T [ X} A, itis expressed as follows.
yr6:=V{a}(i:T'3a)>yindi

Remark 3.14: By definition, renamings I' C A are exactly given by >-assign-

ments ' {3} A.

Definition 3.15 (Copairing):

Given a scope structure Scope S and a family X : Type™T, we extend the
initial renaming & C I" and the renaming copairing derived from the cocarte-

sian structure of € g to arbitrary X-assignments as follows.

T} X T

[|i:= view-emp 3 ||

e {L L A (T X A) = (I, {X]> A)
>0+ 0) XA

[f.g]li:= view-cat 1
vlefti = fi
v-right j =g 4

3.3.1 Substitution Monoids

We now define the internal substitution hom and subsequently substitution

monoids.

Definition 3.16 (Internal Substitution Hom,):
Assuming a scope structure Scopeq S, the internal substitution hom is defined

as follows.
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[.,.]: TypeST — TypeS T — TypeST

[XY]Ta=V{A} 5T (X} A=Y Aa

Definition 3.17 (Substitution Monoids):
Assuminga scope structure Scoper S and a family X : Type™ T, asubstitution

monoid structure on X is given by the following typeclass.

SubstMonoidg (X: ’l}’})cS’T) =
var: .o, —+ X
sub: X = [ X, X]
sub-ext : sub (V" &~ =7 [~ , ~]") sub
sub-id; {Ta} (z: XT o) : subz var m &
sub-id, {Ta} (i: T3 a) (y: T X} A):sub (vari) y = v i
sub-assoc {I I, I3 a} (z: X T} o)
(v: I X 6) (6: I X Iy)
:sub (subz ) 0 &~ sub z (A i+ sub (v1) )

To make substitution a bit less wordy we will use the notation v[y] := sub v 7.

Moreover, we extend substitution pointwise to assignments with the same nota-

tion, using the context to disambiguate:

~[6] := A i sub (v 7) 6.

For example, using these notations the conclusion of the sub-assoc law can be

written :L‘[’y] [5] = $[’Y[5]]

[14] Thorsten Altenkirch, James Chap-
man, and Tarmo Uustalu, “Monads Need
Not Be Endofunctors,” 2010.

[19] Jean-Philippe Bernardy, Patrik Jans-
son, and Ross Paterson, “Proofs for free -

Parametricity for dependent types,” 2012.

Remark 3.18: Note that the type of var, here written _, > , = X, is defini-
tionally equal to the identity assignment type ¥V {I'} — I' —{ X} T". This
coincidence stems from the fact that substitution monoid structures are
exactly S-relative monads [14]. From this perspective, one can construct
something similar to a KLEISLI category for X, the X-assignment category A x
whose objects are contexts in S and morphisms are given by X-assignments.
It is then unsurprising that var—the unit of the relative monad X —is the

identity morphism of its KLEISLI category.

Remark 3.19: As stated previously, to avoid functional extensionality, we
need to know that every function taking assignments as arguments respects
their pointwise equality. This is the case for sub, for which sub-ext is the corre-
sponding “congruence” property (sometimes we say “monotonicity”). As in
the previous chapter, we hide the rather large type of sub-ext by liberally using
aform of relational translation of type theory [19], denoted by the superscript
" Explicitly, given X1, X2 Y1, Y2 Type®T and
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X":V{Tal > X'Ta— X2T a — Prop
YT V{Ta} > Y'Ta— V2T a— Prop,
[X7Y"]" is defined as follows.
[X"Y") {Ta}: [X'YTa— [X2Y2] T a — Prop
IXTYT] f g
V{A} (75T (X1 A) (25T (X2 A)
= (V{a} (i:T50a) = X" (v i) (+* 7))
=Y (f7") (97°)
Then, the type of sub-ext can be seen to unfolds as follows.
V{T a} {z;25: XT a} (z": 2z, ~ )
{A {7 72 T X} A}
= (V{B} (i: T3 8) »mimi)
= 1]~ 25

Remark that with our notation for extensional equality of assignments, the
above type is the same as the following one.
V{T a}{zyzo: XT a} (z": 2y = ;)
{A {7 72: T X} A}
— V1R Y
= @1 [71] & T5[7]

As such, an alternative compact way to write once again the exact same thing
would have been the following

sub (V' =" V" (~ =" ~)) sub.

The extraordinarily scrupulous reader will have noticed that our use of V"

Because type-and-scoped families have zwo indices (the scope and the type),
we should have written the last expression above as well as our actual type for
sub-ext with zwo corresponding V™ at the head, i.e., respectively

sub (V'V"~ =" V" (~ =" &))) sub

sub (V"V"a =7 [~,a]") sub.
This abuse is “easily” made formal by extending the definition of V" to n-ary

type families (and their n-ary relation families) as follows.
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VXY X2 TypehioTn}
(VY {iy it = Xy i, — X%y iy, — Prop)
= (V{iy o ip} — Xy dy)
= (V{iy iy} — X240 )

— Prop
V' XTFYF? =V {iy i} — X" {i;} . {6, ) FYF?

I hope that this glimpse into pure bureaucratic madness makes it clearer why

we need our terse and perhaps slightly magical relational combinators.

3.3.2 Substitution Modules

Substitution monoids have neatly been generalized to abstract scopes, but for the
purpose of modeling OGs, a part of the theory of substitution is still missing.
As explained in our introductory primer (§1.3), in OGs we will typically refer
to various different syntactic constructs such as values, evaluation contexts, terms

and evaluator configurations.

Values (as well as terms) can be readily represented as a scoped-and-typed family
Val: 8§ =T — Type.

In contrast, evaluation contexts are better represented as a family
ECtx: S =T =T — Type,

where E': ECtx I' o f typically denotes an evaluation context in scope I', with
a hole of type o and an outer type B. The family of configurations of an abstract

machine has yet a different sort as it is only indexed by a scope:
Conf: § — Type.

We already know how to axiomatize substitution for values: their scoped-and-
typed family should form a substitution monoid. But for the other two kinds of
families, we would like to axiomatize a substitution operation that allows replac-
ing their variables by values. More explicitly, we want the following substitution

operations.
sub{lTa f}: ECxTaf =T {Val > A > ECxAapf
sub {T'}: ConfT" =T~ Val | A — Conf A

As we will see, these two maps can be accounted for by constructing a substitution

module structure over Val for both ECtx and Conf.
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To capture the substitution of both kinds of variously indexed families, let us

extend the internal substitution hom to n-ary families.

Definition 3.20 (Generalized Substitution Hom,):
Given an abstract scope structure Scopeq S and a sequence of indexing types

T, .., T, : Type, the generalized substitution hom is defined as follows.

H._.n_.ﬂ . TprSyT — T'VPCS’T“"’T” — TprSyTthn

[XY|To; ..ap, =V{A} 2T (X A=Y Ao ..

n

Definition 3.21 (Substitution Module):

Given an abstract scope structure Scopep S and a sequence of indexing
types Ty, .., T, : Type, asubstitution monoid SubstMonoidg M and a family
X : TypeSToTn asubstitution module over M on X is given by the following
typeclass.

SubstModuleg (X: ’l}r‘pcS’Tlv“*Tn) =

act: X = [M . X]
act-ext: act (= =7 [~ , &[") act
act-id{T oy ..a,} (z: XT ay ..a,):actz var~
actcomp {[} I, Ty oy oo} (2: X T4 oy . ayy)
(v: Ty - IMp 1) (6: I, [M]- Ty)
sact (act z ) & & act = y[d]

Overloading the notation for the ordinary substitution sub, we will use z[7] as
shorthand for act x 7.

3.3.3 Renaming Structures

Substitution modules shed a new light on the renaming operation. Indeed, as seen
in §3.1 the state of the art is to mechanize a family with renamings as a coalgebra
for the [> , [ comonad [37][13]. However, a family with renamings can also be
characterized as a substitution module over > (as 3 trivially forms a substitution
monoid).

Pulling the other way on these two point of views, substitution modules over M
could be reframed as coalgebras for the comonad [1;,X := [M,X], exhibiting
the reindexing functor (A,; — €) — (S — €) as comonadic.

Let’s give a bit more details. First, the monoid structure on 3.

Lemma 3.22 (Monoid Structure on 3):
Assuming a scope structure Scopep S, the scoped-and-typed family

I am slightly sloppy around the n-ary
binders denoted by “..”. In the current
Rocq code, I have rather unsatisfyingly
special-cased this definition for scoped fam-
ilies indexed by 0, 1 or 2 types, which
are sufficient for our purpose. In further
work this precise definition could be cap-
tured by building upon [11] Guillaume
Allais, “Generic level polymorphic n-ary
functions,” 2019.

[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.

[13] Guillaume Allais, Robert Atkey, James
Chapman, Conor McBride, and James
McKinna, “A type- and scope-safe universe
of syntaxes with binding: their semantics
and proofs,” 2021.
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o

5 _: Type™T can be equipped with a substitution monoid structure as

follows.

3-sub-monoid : SubstMonoid (.3 .))
S-sub-monoid :=

varg =1
sub iy =71

Next, we can define a shorthand for renaming structures.

Definition 3.23 (Renaming Structure):

S,Ty,...T,,

Assuming a scope structure Scopeq S, given a family X : Type ,a

renaming structure on X is given by the following typeclass.

RenModule X := SubstModule; X

Finally, we define the [J,; comonad and link it with substitution modules.

Definition 3.24 (Internal Substitution Hom Comonad):
Assuming a scope structure Scopeq S, given a family M : Type™T equipped
with a substitution monoid structure SubstMonoid M, define the following

functor.

DM . TprSyTn-an - TypcaTb-nTn

O X = [M.X]

[Jps has a comonad structure, with counit € and comultiplication § given as
follows.

€ fi=fvar 6 frve=f

Lemma 3.25 (Substitution Module is Coalgebra):

Assuming a scope structure Scopeqp S, given a family M : TypeST
equipped with a substitution monoid structure SubstMonoid M, for any
X : TypeSTvTn | substitution module structures over M on X coincide

with [, comonad coalgebra structures on X.

For any X, we directly deduce that [1;; X enjoys a substitution module

structure over M the free coalgebra structure on X.

Proof: This lemma is more or less trivial, since our definition of substitution
module can be directly read as the definition of [];,; comonad coalgebras. In-
deed, act coincides with the coalgebra structure map while act-id and act-comp

coincide with the two comonad coalgebra laws. |



3.3.3 Renaming Structures 91

The above lemma exhibits the link between our substitution modules and [,

coalgebras, extending the previous result on renaming structures [13][37].

Finally, we conclude this chapter by defining one last structure, for families that
have both renamings and variables, described by FIORE and SZAMOZVANCEV as
pointed coalgebras.

Definition 3.26 (Pointed Renaming Structure):
Assuming a scope structure Scoper S, given a family X : TypeS:T, a pointed

renaming structure on X is given by the following typeclass.

PointedRenModule X :=
RenModule X

var: .9, —+ X
actvar {I’ Aa}i(p: T C A): (vari)[p] ~ var (p 3)

With substitution monoids, substitution modules and renaming structures de-
fined, we now have the flexible tools we need in the next chapter to axiomatize the
object language of our generic OGs construction. Although we have only seen a
glimpse of what can be done using the intrinsically typed and scoped approach
for modeling binders, I hope to have demonstrated the ease with which it can be
adapted to specific situations like different indexing (with substitution modules)

or new scope representations (with abstract scope structures).

[13] Guillaume Allais, Robert Atkey, James
Chapman, Conor McBride, and James
McKinna, “A type- and scope-safe universe
of syntaxes with binding: their semantics
and proofs,” 2021.

[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.






Generic Operational Game
Semantics

In Ch. 2 we have seen a general definition of games and the structure of their
strategies and in Ch. 3 we have seen an axiomatic framework for intrinsically
typed and scoped substitution. Everything is now in place to define the generic
operational game semantics construction. Our goal for this chapter in threefold.
We need to define the OGs game, then axiomatize an abstract notion of language
with evaluator, and finally construct a model of this language inside OGs game

strategies.

While a naive definition of the OGs game is not too hard to develop, as we
will see this naive construction hits several related roadblocks quite a bit later,
when trying to prove the model correct w.r.t. observational equivalence. These
roadblocks can be overcome, but at the cost of several small tweaks, distracting us

from the core of the construction.

As such, we start in §4.1 by pushing as far as we can the naive construction,
to get a good understanding of the important parts of the model, and to grasp
what these roadblocks precisely are. In §4.1.1 we introduce an abstract notion of
observation and define the naive OGs game, parametrized by such observations.
We then provide in §4.1.2 an informal and progressive construction of the model.
In §4.1.3 we introduce our novel axiomatization of languages, and properly define
their interpretation into naive OGs strategies. Finally in §4.1.4 we discuss the

correctness proof and the problematic points of the naive model.

We present the refined model in §4.2. We start by refining the game (§4.2.1),
then the strategies and their composition (§4.2.2), and finally the OGs model
(§4.2.3). We conclude in §4.2.4 by stating the correctness theorem, making all of
its hypotheses explicit.

4.1 A Simple Oes Model

4.1.1 The Ocs Game

Recall from the informal introductory description (§1.3) that the OGs model
proceeds by computing the normal form of a given configuration (or term) and
then splitting it into a bead variable, an observation on it, and a filling assignment,
associating a value to each hole or argument of the observation. An OGs move
is then obtained by combining the head variable and the observation, while the
assignment is kept local to the Ogs strategy and hidden from the opponent.
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[77] Benjamin C. Pierce and David N.
Turner, “Local Type Inference,” 1998.
[35] Jana Dunfield and Neel Krish-
naswami, “Bidirectional Typing,” 2022.

Note that this definition is isomorphic
to T — Fam S, the record presentation is
simply for clarity. In fact, up-to the name of
the projections, it is exactly the same defin-
ition as the half-games from Ch. 2, but it is
used for a different purpose (or maybe not).

Symmetrically, the opponent can then guery these hidden arguments by itself
playing a move of the same shape, a variable and an observation, resuming execu-
tion on player’s side. To make these ideas formal, we first need to properly define

what these observations look like.

Intuitively, the set of observations should be indexed by an object type: the type
of values they are meant to be observing. Moreover, each observation has a given
arity, a list of arguments or holes, i.e., a scope. At first sight it might seem natural
to describe observations simply as a scoped-and-typed family with scopes S and
types T given by Obs : Types T where 0: Obs I a denotes an observation 0 on
some value of type o with arity I'. While this representation could work out, it
would be quite unnatural to manipulate. To explain this, let us take a step back.

For other scoped syntactic categories like values or terms, the indexing scope
constrains what variables the term can mention. Because we want to think of
variables as pointers into a scope, in terms of conceptual dependency, the scope
is preexisting and the term over it comes afterwards. It is then sensible to reflect
this dependency formally and use scoped-and-typed families, making the sort of
terms depend on a scope (and also on an object type). On the other hand, the
scope of an observation is not there to constrain anything but to make known the
arity of that observation. Here, the more natural information flow is to have the
scope come after the observation, which would thus only depend on the type.
In the language of bidirectional typing [77][35], this amounts to saying that for
patterns, the scope is being znferred while the type is being checked.

These fine encoding considerations might be dismissed as philosophical or even
aesthetic. But they do have pragmatic consequences, typically on universe levels
and sizes. As a perhaps more tangible argument, there are in typical calculi only a
finite number of observations at any given type while the set of scopes is infinite.
As such, only a fraction of scopes can be the arity of some observation, wasting
the expressivity of scoped-and-typed families since for most I', Obs I' o would
be empty.

This leads us to axiomatize observations as binding families, which we now

define.

Definition 4.1 (Binding Family):
Given S, T : Type, a binding family is given by records of the following type.
Bind ST :=

Op:T — Type
holes {a}: Opa — S

Let us now define OGs moves, which are made of pairs of a variable and an obser-

vation (or in fact triplets accounting for the type which is also implicitly there).



Definition 4.2 (Named Observation,):
Assuming a scope structure Scopeq S and a binding family O : Bind S T, the

scoped family of named observations O : ’l‘ypcs is defined as follows.
O'T':=(a:T)x (I'5a) xO0.0pa«a

We will write % = 0 as a shorthand for (e, 7, 0), leaving a implicit. Moreover,

we lift holes to named observations with the following definition.

holes* {T'}: O*T" —» S

holes® (i = 0) := O.holes o

In the OGs game, both players play named observations and in doing so, they
introduce fresh variables corresponding to their holes. These fresh variables can
then be further observed by the other player, but not by themselves! The game
positions can thus be described as pairs of scopes (I, A), each tracking the vari-
ables introduced by a given player, and thus allowed to be chosen and observed
by the other player. We obtain the following game definition.

Definition 4.3 (OGs Game):
Assuming a scope structure Scopeq S, given a binding family O : Bindp S,

the OGs game on observations O is defined as follows.
Ocsg : HGame (S x §) (S x §) =

Move (I, A) := O* T
next {I'; A} 0 := (A 4 holes® o,T")

Oasg : Game (8 x S) (S x S) :=

JHG

client := OGsg’
server := OGSy

Remark 4.4: To avoid needlessly duplicating definitions we have preferred a
symmetric game, where the client and server half-games are equal. To achieve
this, we do not use an absolute point of view on the scopes, where some
player would always append to the first component I' while the other player
would append to A. Instead, we adopt a relative point of view, where the
first component always tracks the variables introduced by the currently passive
player, in other words, the one who played last. As such after each move the

two components are swapped.

While this trick has bought us some simplicity by obtaining a sz7ictly symmetric
game, it should be re-evaluated in future work. Indeed, I suspect that it
murkens the categorical structure of the OGs game in contrast to the absolute

presentation. Note that the absolute presentation is still symmetric but in a

4.1.1 The OGs Game
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weaker sense, only up to a function adapting the position (namely swapping

the two scopes).

With the OGs game defined, using the generic description of game strategies as
interaction trees developed in Ch. 2, we obtain Ogs strategies easily.

Definition 4.5 (0Gs Strategies):
Assuming an abstract scope structure Scoper S, given a binding family

O : Bindp S active and passive OGs strategy over O are given as follows.
OGsg = Strat’ oo (A (T, A) 2 0)
OGsg = Strat o (A (I, A) = 0)

4.1.2 Diving Into the Machine Strategy

For now we know relatively little about the abstract language for which we are
constructing an OGs model: we know about its scope structure, its set of types
and a binding family describing its observation. To complete the construction
of the OGs model, that is, to implement a strategy for the OGs game, we will
need to know quite a bit more. Concretely, our goal is to axiomatize something
which we call a language machine, and to deduce from it the machine strategy,

implementing the OGs game. More precmely, we will implement the machine

strategy as a big-step system (D 9) over the OGs game. As our axiom-
atization of the language machine is largely guided by what we need to implement
the machine strategy, we informally introduce both of them in lock-step, walking

gradually through all of their components.

States  The starting point to implement a strategy is to choose two families for
the active and passive states. Recall that intuitively, during the OGs game, each
player introduces fresh variables that their opponent can subsequently query. As
such, the states of the strategy ought to remember what value was associated to
each introduced variable. Because of our tricky relative point of view we have to
take some care with the scopes. Recall that in a position (T, A), if it is our turn
to play, then I" lists the opponent-introduced variables, while A lists the ones we
introduced. As such, the active states of the machine strategy should contain an

assignment
o:A{Val}>T.
In contrast, passive strategy states should contain an assignment

o:T —{Val|» A.
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For this to make sense, the language machine must have a scoped-and-typed

family Val : Types T which we call values.

In an active position, we need to decide which move to play, so a bit more
data is required besides the assignment . Recall that intuitively the Ogs model
computes the next move by reducing a program to a normal form. As such active
states need to store such a program. As motivated in the introduction, we will
entirely forget about terms and instead only work with configurations, intuitively
the package of a term with its continuation. We thus postulate a scoped family
Conf: Type® and define the active and passive states of the machine strategy as
follows.

ogs™ (T, A) := ConfT' x (A { Val | T')
ogs” (I[LA):=T - Val}» A

Next, to implement the machine strategy transitions we need to know two things:
how to compute our next move and how to resume when we receive an opponent
move. Accordingly this will be reflected in the language machine axiomatization

with two maps, evaluation and application. Let us start with the first one.

Play  In the Ogs construction the next move is computed by evaluating the
term at hand, hence we need to axiomatize an evaluator. Given some family of
normal form configurations Nf: Types , a possibly non-terminating evaluator

for open configurations can be represented as follows.

eval {T'}: ConfI' — Delay (NfT")

Then, to actually compute the next move, the OGs construction mandates that
these normal forms be split into three components: the head variable on which it
is stuck, an observation on that variable, and an assignment filling the arguments
of the observation (in other words, a named observation and a filling assignment).
Instead of axiomatizing a family of normal forms and a splitting map, exploding
each normal form into our three components, we will simply define normal
forms as such triples. Although this might seem overly restrictive, it makes no real
difference on the implementation side. These split normal forms can be defined

as follows.

Definition 4.6 (Split Normal Forms):

Assuming a scope structure Scoper S, given a binding family O : Bind S T
and a scoped-and-typed family V' : TypeS:T, split normal forms are the scoped
family N£G : TypeS defined as follows.

NfZ T = (0: O"T) x (holes* 0 [V} T)

Extensional equality of normal is given by the data type
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Here, 0 stands for the output family of
the machine strategy, which is empty in
concordance with Definition 4.5.

.~ IRel NFZ NfQ
overloading as usual the symbol ~=. It has the following only constructor.

H:v ~ 7y
TCHH“H: (O.’Yl) ~ (0.72)

Using the newly defined split normal forms, the evaluation map of a machine

language can now be given its final type.
eval {T'}: ConfT" — Delay (NFVOaI F)

This evaluator is sufficient to implement the active transition function of the
machine strategy as follows.
mstrat-play {¥}: ogs™ ¥ — Delay (0 + (Ocsy’ ® ogs™) ¥)
mstrat-play (¢, 0) :=
(0,7) < eval ¢
et (inr (0,[0,7])

The function starts by computing the normal form (0, 7), where o is a named
observation and «y the filling assignment. Then, it plays the move o and stores
the new filling v besides the currently stored assignment o by copairing of assign-
ments. To detail the typing, assuming ¥ = (T", A), we have

o: A ~{Val}»T
v:holes® o [ Val |» T

By definition of the OGs game, after playing o, the next position is given by
(A 4+ holes® 0,T'), meaning that we must provide a passive state of type

(A 4 holcs“o) ~[Val|» T

which indeed matches the type of the copairing [0, 7].

Coplay  We now need to define the coplay function, which takes a passive
machine strategy state, a move and returns the next active machine strategy state.
Active states contain a configuration, but also an assignment quite similar to the
passive configuration. This assignment will simply be weakened and passed along:
when the opponent plays a move, the player does not share anything new. Hence,
the list of values we need to remember does not change. We can already provide

a partial definition.
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mstrat-coplay {\Il} cogsm W — (OGS'O'“ = ogs+) \\
mstrat-coplay o 0 :=

fst == ...
snd := o[r-cat;]

What is left is to compute the configuration part of the next active state. Recall
that intuitively, upon receiving a move (i = 0), the OGs construction obtains the
next configuration by looking up the value v associated to ¢ and applying the
observation o to v. As such, we need to axiomatize this application operator in
the language machine. It could be modeled by a map of the following type.

apply {T" o} : ValT' o« — (0: O.Op &) = Conf (' + O.holes 0)

Note that the scope of the returned configuration is extended by the observation’s
holes, since the filling was not given. While this is precisely the operator needed
for the OGs construction, we chose to generalize it slightly by adding the filling
assignment (i.e., the observation’s arguments) as arguments instead of extending
the returned configuration’s scope. We thus obtain the following type.

apply {T'a} : ValT o — (0: 0.0p &) — (O.holes 0 —{ Val |+ I") — ConfT'

Remark 4.7: While slightly superfluous for the OGs construction, in presence
of variables and substitution, both variants are mutually expressible. My feeling
is that this second variant is more natural to implement in instances as it is
the natural encoding of a generalized eliminator. This design choice should

probably be revisited in future work, if only to motivate it better.

Using the apply operator we now finish the definition of the coplay transition
function.

mstrat-coplay {®¥}: ogs™ ¥ — (Ocsy = ogs') ¥
mstrat-coplay o (i = 0) =
fst := apply (o i)[r-cat;] o (r-cat,. o var)

snd := o[r-cat;]

Note that this definition crucially requires that the syntax of values has a pointed
renaming structure. Indeed, both variables and renamings are used to weaken the
assignment part of the state and to “synthesize” the filling assignment passed to
apply. As noted above, the second apply operator is indeed superfluous. If we had
used the first one, the first projection of the strategy state would have simply read

apply (0 9) o.

929
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Let us sum up the previous section and properly define the language machines
and then the machine strategy. We have seen that language machines consist of

values, configurations, an evaluation map and an observation application map.

Definition 4.8 (Language Machine):

Given a scope structure Scopeq S, a binding family O : Bindy S and families
V. 'l'ypcS’T and C': 'l'ypcs, a language machine over O with values V and
configurations C' is given by records of the following type.

LangMachine OV C' :=

eval {T'}: CT — Delay (N£Z T')

apply {T'a} (v: VT @) (0: 0.0p a)
: (O.holeso —[VI-T) = CT

eval-ext : eval (V" &~ =7 &) eval

apply-ext: apply (V" &~ =7 V" &~ —7 &) apply

Remark 4.9: Note that we added two congruence properties to the language
machine. The first states that eval sends extensionally equal configurations
to strongly bisimilar computations of extensionally equal normal forms. Simi-
larly, we require that apply sends extensionally equal values applied to the same
observation and two extensionally equal assignments to extensionally equal
configurations. There is some slight notational abuse in the above type of this
last statement so we give it here in full.

V{la} (v'v?: VT a) (v": o' = 0?)
(0:0.0pa) (v! 4%: O.holeso [V} T) (47 : v & 4?)

— apply v 0 vt = apply v2 0 2

Remark 4.10: Note that the above definition only gives the computational
structure of a language machine, only requiring very lightweight laws con-
cerned with extensional equality. This will of course not be enough to prove
the OGs model correct w.r.t. observational equivalence of configurations, so

that we will gradually define more properties on language machines.

Next, assuming a language machine where values and configurations have renam-
ings, we can give the full definition of the machine strategy.

Definition 4.11 (Machine Strategy):

Given a language machine M : LangMachine OV C such that V
and C have renamings, ie., such that PointedRenModule V' and
RenModule C' hold, then the machine strategy is the big-step system
mstrat M : Big-Step-System, o 0 defined as follows.
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mstrat M :=
[ gtate* (I,A) = CT x (A [V}5T)
state” (I, A):=T -[V}> A
play (¢, 0) =

|:(0, v) < M.eval ¢ ;
ret (inr (o, [0,7]))

coplay o (i =0) =

l:fst := M .apply (o i)[r-cat;] o (r-cat,. - var)

snd := or-cat]

We finish up the model construction by embedding the language configurations
into active OGs strategies.

Definition 4.12 (OGs Interpretation):

Given alanguage machine M : LangMachine O V' C'such that V and C have
renamings, i.., such that PointedRenModule V' and RenModule C' hold,
then the active and passive OGs interpretations are defined as follows.

[ {T}: CT — Ocs§ (T, @)
[elay :=unroll™ . ar (e, 1)
[z {T A}: T V= A = Ocsg (T, A)

HIYIIM = unr0117n\stmt MY

4.1.4 Correctness?

Now that the OGs interpretation is defined, we can at last state the correctness
property. Intuitively, the goal is to say that if two programs have bisimilar
Ogs interpretations, then they are observationally equivalent. Traditionally, two
programs are deemed observationally equivalent, or more technically contextually
equivalent, if for any closed context of some given ground type, when placed in
that context either both diverge, or both reduce to the same value. In our slightly
unusual setting which forgoes any notion of context and instead places configu-
rations at the forefront, the natural notion of observational equivalence is not

contextual equivalence but instead something we call substitution equivalence.

Intuitively, substitution equivalence relates two machine configurations ¢; and
¢, whenever for any substitution y, M.eval ¢;[y] &~ M .eval ¢,[]. There are
however some subtleties which we will discuss after the actual definition.

Definition 4.13 (Substitution Equivalence):
Assume a language machine M : LangMachine O V' C' such that V' forms

a substitution monoid SubstMonoid V' and that C forms a substitution
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module over it SubstModuley, C. Define evaluation to (named) observation as

follows.

eval-to-obs {T'} : C T' — Delay (ON F)

eval-to-obs ¢ := fst (§) M.eval ¢

Then, given a scope §2: S, substitution equivalence at final scope Q is the

indexed relation on C' defined as follows.

%8“ AT}H:CT = CT — Prop

o

c; . co = (v: T V] Q) = eval-to-obs ¢; [y] ~ eval-to-obs ¢, [7]

The first subtlety is that in the above definition the final scope €2 plays the same
role as the ground zype of contextual equivalence. The generalization from a single
type to an entire scope is required simply because in the abstract scope structure
axiomatization we did not introduce any means to talk about singleton scopes.
However, as this scope is freely chosen in the instances, it may very well be instan-

tiated by a singleton scope, which usually exists in concrete cases.

Second, instead of directly comparing two normal forms obtained by evaluation,
substitution equivalence first projects them onto their named observation part,
disregarding the filling assignments. The reason for this stems from what makes
a“good” ground type. For standard calculi, the ground type of contextual equiv-
alence is invariably taken to be a very simple type such as booleans or the unit
type. What is important, is that values of this type can be meaningfully compared

syntactically, as this is what contextual equivalence does.

To see how things could turn bad, let us look at a pathological example that does
not follow this rule. Assume our calculus has a weak reduction that does not
reduce function bodies and now set the ground type of contextual equivalence to
some function type A — B. Then, given two lambda abstractions v := Az. U
and v := Az. V of type A — B, contextual equivalence of © and v implies that
both are syntactically equal. Indeed, under the trivial context both evaluate to
themselves. Hence, two merely pointwise equal function may be distinguished
and this completely breaks important properties of contextual equivalence, such

as characterizing the greatest adequate congruence relation on terms.

While it might not be very easy to give a clear criterion on what makes a
good ground type in general, our setting makes it is relatively easy. The part
of a normal form which can meaningfully be syntactically compared is exactly
its named observation part (obtained by first projection). One approach would
be to restrict the types of £ to be such that no observation has any hole,
i.e., such that for any 0: O.Op @, O.holes 0 &~ @. This would entail that the
projection fst: Nﬂ? Q — O" Q is in fact an isomorphism. However, we opt



for the arguably simpler approach of leaving {2 unconstrained but dropping the
problematic part of the normal forms.

Finally, we can state the much awaited correctness property of the OGs model.

Definition 4.14 (Ocs Correctness):
Assume a language machine

M : LangMachine OV C

such that V' forms a substitution monoid SubstMonoid V' and that C forms
a substitution module over it SubstModuley, C. Given a scope Q2 : S, OGs is
correct with respect to substitution equivalence ar S if weak bisimilarity of OGs

strategy interpretations entails substitution equivalence.
+ o~ + ~0
VAT} (c1,¢0: CT) = erly ~ lealyy = e ~50 €o

Alas, from now on, things start to break apart. As explained in the introduction
of this chapter, we will not be able to directly prove correctness with this simple

version of the OGs model. Without going into too many details, let us see why.

The main tool for proving correctness of OGs, and in fact arguably the prime
reason for introducing game or interactive models in the first hand, is the defin-
ition of a composition operation, taking a player strategy and an opponent strategy
and pitting them to “play” against each other. Indeed, if we manage to define

such that the following two properties hold, then we can easily

uHu

an operator

conclude correctness of the OGs model.

eval-to-obs c[y] = [e]is || [¥]ar (adequacy)

1789 = (51 ][ t) ~ (59 ] 1) (congruence)

Indeed, given ¢y, ¢y : C T and assuming [¢; ] 5, = [¢s] 44> We need to prove that
for any v: I' {V}= Q, eval-to-obs ¢;[y] & eval-to-obs ¢y[]. The proof goes
like this.
eval-to-obs ¢;[v] = [e1]ar | [¥]ar by adequacy
~ [ealar | [9]as by congruence on hyp.

~ eval-to-obs ¢y[y] by adequacy
Note that for all of this to typecheck, the composition needs to have the following
type.
: 0csg (T, 0) = Ocsg (T,Q) — Delay (0¥ Q)

qu_l

So how would we go about to define composition? Although we have not yet

talked about it, composition is quite a natural thing to do and makes sense for any

4.1.4 Correctness?
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game as introduced in Ch. 2. After all, games exist to be played! Forgetting about
Ogs for a second, intuitively, composition works by inspecting the beginning of
the active strategy, searching for the first rezurn or visible move. In case of a “ret 7
move, composition ends, returning the result 7. In case of a "vis m k move, m is
passed to the opponent strategy and a synchronization occurs: the active strategy
becomes passive, the passive strategy becomes active, the roles are switched and
the composition starts again. Assuming for simplicity that both the player and
the opponent strategies have a constant output family R : Type, given a game

G : Game I J, these intuitions guide us to the following definition.

ol wrStratt g (Vi R) ¢ — Strat o (A j = R) 4 — Delay R

st H § =
out := st.out
‘retr = retr
“taut = "tau (] s7)

“vism k= "tau (s~ m || k)

Our first roadblock is now apparent: instantiating this with the OGs game does
not match the type that we wanted. There are two discrepancies. First, for two
strategies to compose, they must agree on the current game position 1. However,
for adequacy to typecheck, we need to compose [c[ 3, with [] 37, respectlvely at
position (I', &) and (T, ). Second, Ogs strategies as defined in Defini

have an empty output family, ie., R := L. As such, no "ret move will ever
be encountered and the composition operator we have defined will output an

element of Delay L, in other words an infinite loop!

The definition of composition definitely works as it intuitively should, so the
problem lies in our treatment of €2 in the OGs strategies. To fix this, the idea is
that instead of €2 being part of the game position, it should appear in the output
family. We thus update our definition of OGs strategies, parametrizing it by this

final scope.
OGsg Q= Stat" 0 (A (T,A) = 0% Q)
OGsp Q= Strat o0 (A (T,A) = 0¥ Q)
With this fix, the composition operator can now be specialized to the following
type.
:06sH Q (0, A) = Ocsg Q (T, A) — Delay (O* Q)

uHu

This is already much more satisfying, although we will need to fix the machine
strategy and the active and passive OGs interpretations to take this new parameter

€ and the associated return moves into account.



There is however one more roadblock, much more insidious. To understand
it, we need to dive yet deeper into the correctness proof. Proving congruence
of composition will be entirely straightforward and the meat of the correctness
proof is concentrated in the much trickier adequacy proof. Attacking adequacy
directly, by starting to construct a bisimulation, is largely unfeasible because of
the complexity of the right hand side. Hence, we again need to cut this statement
into smaller pieces and devise a more structured proof strategy. As it happens,
composition can be presented as the fixed point of an equation in the Delay
monad, in the sense of §2.6. Moreover, without too much work we can show
that the left-hand side, eval-to-obs ¢[7], seen as a function of ¢ and 7, is also a
fixed point of the same equation. Then, since both sides are fixed points of the
same equation, to conclude adequacy it is sufficient to show that this composition
equation has unicity of fixed points (w.r.t. strong bisimilarity). To ensure this,
we build upon our new theory of fixed points and prove that the composition

equation is eventually guarded.

What eventual guardedness means in this case, is that synchronizations (move
exchanges) do nothappen to0 often. More precisely, in the output of composition,
silent moves have two sources: the ones arising from seeking the next non-silent
move of the active strategy, and the ones arising from a synchronization. Then,
eventual guardedness of composition means that every so many synchronizations
we can find a guard, i.e., a “move-seeking” “tau. In other words, “move-secking”

“tau happen infinitely often.

This is no small property. It does not hold for the composition of arbitrary strate-
gies, but only for the composition of strategies verifying a weak form of visibility.
Essentially, visibility mandates thatin a position (I, A) when astrategy is queried
on a given variable in its scope, say ¢ : I' 5 @, it must only query variables in A
that were introduced before i during the play. However, and this is the problem,
because we have kept the two scopes I' and A separate, it is not evident which
variables in A were introduced before some given variable in I' as they are not

stored contiguously.

Our solution to this second problem is conceptually quite simple: we will switch
to amore informative set of positions for the OGs game. Instead of using a pair of
scopes, we will use a single sequence of scopes, containing an alternation of scopes

of variables introduced by each player, hence keeping track of their relative order.

Remark 4.15: Note that to avoid getting too deep into the theory of Ogs
strategies, we will entirely side-step the definition of the visibility condition
and instead only prove eventual guardedness for composition of two instances

of the machine strategy, which happens to behave satisfyingly.

4.1.4 Correctness?
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The next section is thus devoted to the definition of an OGs game refined
with our two patches: final moves and interlaced positions. We will then fix the

machine strategy, properly define composition and state the correctness theorem.

4.2 A Refined Os Model

4.2.1 Interlaced Positions

As explained in the previous section, instead of tracking the OGs position using
two scopes, where after each move the fresh increment is concatenated into one
of the components, we now keep a common /ist ¥ : Ctx S of these context
increments. Such lists ¢ » Iy » Ay » I} » A, » .. will thus contain groups
of scopes of fresh variables introduced alternatively by each player. Hence, the
concatenation of all the ever elements forms the scope of variables introduced by
the currently passive player, while the concatenation of the odd elements contains
the variables introduced by the currently active player. Let us define the necessary
utilities.

Definition 4.16 (Interlaced OGs Context):

Givenaset S': Type, the set of interlaced OGs contexts is given by Ctx S.

Assuming a scope structure Scopeq S, further define the even and odd concate-
nation maps | ", : Ctx S — S as follows.

e =
17U r )= U 4T

l7e =
L (grD):=1""¥

We can now give the definition of the refined OGs game.

Definition 4.17 (0s Game):
Assuming a scope structure Scopeq S, given a binding family O : Bindp S,
the OGs game is defined as follows.

Ocsg’ : HGame (Ctx §) (Cx §) =

[ Move U := O% | +W
| next {¥}o0:=" » holes* o

0Gs$ : Game (Ctx §) (Ctx S) ==
[ client := Ocsly

| server := Oasg’




4.2.2 Final Moves and Composition

Besides refining the OGs positions, our second patch is to add final moves to
the Ogs strategies. Intuitively, OGs strategies will now be parametrized by a
final scope Q, and will be allowed to use "ret moves to play a named observation
on §2. While these moves are quite similar to the usual ones (also being named
observations), they bear no continuation. Instead, they should be thought of as

final moves, ending the game.

Definition 4.18 (OGs Strategies):
Assuming an abstract scope structure Scoper S, given a binding family
O : Bindy S and a scope Q: S, active and passive OGs strategy over O with

final scope €2 are given as follows.
OGsp Q= Strat™ 0 (A ¥ 08 Q)
O6sg Q= St . (AT 0" Q)

As explained before, this is now enough to define a meaningful composition
operator. However, instead of the direct construction we have shown earlier, we
will construct composition as the fixed point of an equation (see §2.6) in the
Delay monad. This construction of composition as the solution of an equation
system will allow us to be more precise during its manipulation. As the compo-
sition operator has two arguments, to express it as the fixed point of an equation
system, we first need to uncurry it. The type of its uncurried argument is a bit of

a mouthful, so we express it with a small gadget which will also be useful later on.
Definition 4.19 (Family Join):
Define the family join operator as follows.
XL{I}: TypeI — TypeI — Type
XXY:=0G6:I)xXixYi

Borrowing from the similarly structured named observations, we will use the
same constructor notation z =y := (i, z,y) with the first component 4 left
implicit.

The domain of the OGs composition function can now be expressed as the family

join of active and passive OGs strategies (Ocsg, Q) X (Ocsg Q). We follow up

with the composition equation.
Definition 4.20 (Composition Equation):
Assuming Scopeq S, given O: Bind S T and Q: S, define the composition
equation coinductively as follows, with Arg := (Ocsg Q) X (Ocsg Q).
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compo-eqn : Arg — Delay (Arg + O Q)

compo-eqn (stes):=

out := st.out
“recr  :=ret (inr r)
“taut = "tau (compo-eqn (t=s7))

“vis m k :="ret (inl (s~ m = k))

Remark 4.21: Note the different treatment of iteration in the "tau case and
in the "vis case. In the "tau case, we emit a “tau move, guarding a coinductive
self-call, while in the "vis case, we instead return into the left component of the

equation, in a sense of performing a formal self-call.

One way to look at it, is that the interaction works by seeking the first visible
move (or return move) of the active strategy and that an interaction step (i.c. a
formal loop of the equation) should only happens when both strategies truly
interact.

More pragmatically, much of the work for proving OGs correctness will be
dedicated to showing that this equation admits a st7ong fixed point, i.c., that
adding a “tau node to guard the self-call in the "vis case is ot required. On the

other hand, adding the “tau node in the "tau case is indeed always necessary.

With this equation in hand we can readily obtain a fixed point by iteration,

although only w.r.t. weak bisimilarity.
Definition 4.22 (Composition Operator):
Assuming Scopeq S, given O : Bind S T and Q: S, define the composition
compo : (OGSB Q) X (Ocsg Q) — Delay (ON Q)

compo := iter,

compo-eqn

{T}: Ocs, QU — Ocsy QU — Delay (0% Q)

|_|H|_l

st H § = compo (SJr . 37)

This concludes our abstract constructions on the refined Os game.

4.2.3 Precise Scopes for the Machine Strategy

Thankfully, the axiomatization of language machines has been left intact by our
two patches to the Ocs game. We however need to modify the machine strategy.
First, we need to take into account the final scope €2, and second, we need to take

advantage of the new information available in the positions.



4.2.3 Precise Scopes for the Machine Strategy

To avoid some clutter, in this section we globally set a scope structure Scopeq S,
a binding family of observations O : Bind S T, two families V : TypeS:T and
(OF Types such that PointedRenModule V and RenModule C, and a language
machine M : LangMachine O V' C.

Recall that in the naive OGs game, machine strategy states were defined as follows.
ogs™ (I[LA):=CT x (A -{V}=T)
ogs” ([LA):=T -V}» A

With the new interlaced game positions we can still recompute the two scopes, so
that adding the final scope €2 to the mix, we could be tempted to define the new

states as follows.

ogs" W= C (4 LTY) x (LT Vs (@4 [7T))
ogsm W= |TU (VI (Q 4 | P)

This would indeed work, but now that we have more information we can be
much more precise in tracking the scopes of each value stored in the assignments.
This is quite important since every ounce of precise specification we can cram
into the typing will be something less to worry about during manipulation and
proofs. Taking a step back, let us consider what must actually be stored inside
these assignments. Taking the point of view of the machine strategy, at every point
of the game where we play a move, we have a normal form, we emit its named
observation part and we must remember the filling assignment part. As such, the
exact scope used by this filling is the opponent scope at that point in the game (and
as always the final scope €2). We concretize this idea with the following definition

of telescopic environment, defined inductively over the interleaved Ogs position.

Definition 4.23 (1elescopic Environments):
Given a final scope Q : S, active and passive telescopic environments are given
by the two mutually defined inductive families

'I‘c]ca : Ctx S = Type

Teleg : Ctx § — Type
given by the following constructors.

e: Teleg ¥

e > i Teled, (U » T)

[0}

et: ’l‘c[ca

e:Teley, U ~:T [ Val |5 (Q + |7)
e~ : Teleg € er v:Teleg (TP
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Remark 4.24: The notation e » "t has been chosen to evoke a sequence
extension on the right by “nothing”, in contrastto e » -y which doesadd y to
the environment. Indeed, when a player is currently active this means that they
did 7ot play the last move, so that what they last stored was indeed nothing,
only recording the fact that the other side played.

This data is enough to recover the original assignments of the simple OGs model,
as witnessed by the following collapsing functions.

Definition 4.25 (Telescopic Collapse):
Given a final scope €2 : S, define the following active and passive telescopic
environment collapsing functions, by mutual induction.

L Teley O — |0 [ Val |5 (Q 4 | 70)
bret =1
Vet = (1 e)lp]

i Teleq U — |70 { Val |» (Q # | 0)
e =0
L(er v)=[l"¢en]

The shorthand p is the obvious renaming of type
Q41 Q4 (T HT))
given by p := [r-cat, r-cat, [r-cat;]].

The refined machine strategy is now simply a matter of adapting to the new
telescopic environment, and routing the moves properly, depending on whether

they concern the final scope 2 or “normal” variables.

Definition 4.26 (Machine Strategy):
Given a final scope €2 : S, define the machine strategy as the big-step strategy
mstratyy : Big-Step-System o) (O" Q) defined as follows.

IllStI'éltM =

statet W := Conf (Q 4 [ *T) x Tele?2 v
state” W = Teleg ¥
play (¢, e) :=
((i=0),7) + evalc;
(view-cat 4)

v-left i := ret (inl (i = 0))

v-right j := ret (inr ((j = 0), (e »~ 7¥)))
coplay e (2 = 0) := (apply (1~ e i)[p1] 0 py, e »*:2)
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The renamings p; and p, are defined as follows.

[r-cat;, r-cat, [r-cat;]]

P1:
pg = r-cat,.[r-cat,]
Ogs interpretation can now be defined just like before, by unrolling of the big-

step system defined by the machine strategy.

Definition 4.27 (0Gs Interpretation):
Given a final scope 2 : S, define the active and passive OGS interpretations as

follows.

[La {T}:CT —= Ocsy Q (e » T)

H:C:HL = L]Ilr()11+lllst1}1t M (C[r—cat’l‘]7 € ’

[a {T}: (T Vs Q) = Ocsg Q (e » T)

H7H7M = unr0117111sL131LM (€A - 'Y[Y'Catl])

4.2.4 Correctness!

Finally we arrive at correctness. The statement is still the same as for the simple
OGs model:

VA{T} (¢; ¢o: CT) = [ey]ar ~ lealyr = ~2,

Now, though, we will not stop at the mere statement, but provide the actual
theorem. As such, we need to introduce a couple hypotheses on which the
theorem depends.

Respecting Substitution Until now, we have required very little on the
language machine. For the machine strategy construction, we have required a
renaming structure on values and configurations, while for the correctness state-
ment we have required substitution monoid and module structures on values
and configurations. In both cases, we did not constrain in any way M .eval and
M .apply, this is of course unrealistic! For correctness to work, we will crucially
need to know that both maps of the machine respect substitution. Let us intro-
duce these core hypotheses.

Definition 4.28 (Language Machine Respects Substitution):
Assume a scope structure Scoper S, a binding family O : Bind S T', two It would definitely be interesting to define

families V, C, and a language machine M : LangMachine O V' C such that language machines respecting renamings,
) . . but as substitutions subsume renamings we
moreover SubstMonoid V" and SubstModuley, C'. Define the embedding of

will skip over this notion.

normal forms into configurations as follows.
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Note that the laws eval-sub and eval-nf
are specified w.r.t. strong bisimilarity, with
extensional equality at the leaves (which in
both cases are normal forms).

nf-emb : Nﬂ? — C

nf-emb ((¢ = 0),7) := M.apply (vari) oy

Then, the language machine M respects substitution if there is an instance to

the following typeclass.
LangMachineSub M :=

eval-sub {T' A} (¢: CT) (o: T -V} A)
: M.eval c[o] = (M.eval ¢ 3= A\ n > M.eval (nf-emb n)[o])
apply-sub{T’' A a} (v: VI a)oy(c:T —V}+ A)
: M .apply v[o] 0 v[o] ~ (M .apply v o y)[o]
eval-nf {T'} (n: Nﬂ? F)
: M.eval (nfremb n) = rec n

Our statement of the law apply-sub should be relatively straightforward. How-
ever, eval-sub is a bit more tricky. Indeed, there is no hope of stating a simple law

such as
M .eval c[y] = (M.eval ¢)[]

since it is a well-known fact that normal forms are never stable by substitution.
Instead, after evaluating ¢ to a normal form n, we need to embed it into config-
urations, substitute it and then evaluate the result again. In other words, we

perform a bereditary substitution.

Remark 4.29: The last law eval-nf should have a clear meaning;: it justifies
calling normal forms zormal as it requires them to be fully evaluated. It might
be a bit surprising to find it in this package since it does not seem to have any-
thing to do with substitution. The reason for including it here, is that assuming
LangMachineSub M, although there is no hope of defining a substitution
operator on normal forms, we can show that the family I" = Delay (Nf‘g I)
is a substitution module over values. Its substitution action is a form of
hereditary substitution: first evaluate the delayed normal form, embed it into
configurations, substitute it using the module structure of configurations, and

further evaluate the result.

NfSub : SubstModuley, (Delay o Nfg)
NfSub :=

actu o :=u 3= An > M.eval (nf-emb n)[o]

The proof for identity law of this substitution module structure crucially
depends on eval-nf. Given u : Delay (NFG T its statement is the following.



u = Ant> M.eval (nfrembn)[var] = wu

Then, by monad laws, the above is easily reduced to proving that for any
n: Nt‘{? T

M .eval (nfemb n)[var] 2= retn

which can be further simplified using the identity substitution law of config-
urations to

M .eval (nfrembn) = recn
in other words, exactly eval-nf.

We conjecture that this hints at less ad-hoc route for formalizing language
machines respecting substitution. Instead of eval-sub and apply-sub, we would
require that Delay o Nﬂ? forms a substitution module over values, and that

eval and nf-emb are substitution module morphisms.

We are now done with the core hypotheses, but there are two more technical
hypotheses we must require.

Decidable Variables  The argument for the eventual guardedness of the com-
8 g

position equation requires us to case-split on whether or not some given value is

avariable. “Being a variable” can be neatly expressed as belonging to the image of

var, in other words, exhibiting an element of the fiber of var over some value.
isvar {T'a}: VT a — Type
is-var v := Fiber var v

Then, our case-splitting requirement can be formalized by asking that is-var v is

decidable for all v. We define the standard decidability data type
Decidable (X : ’l‘ypc) : Type
by the following constructors.

p: X p: X—>0
yes p : Decidable X no p: Decidable X

We package this into a typeclass, together with some additional requirements

making is-var well-behaved.

Definition 4.30 (Decidable Variables):
Assume a scope structure Scopeq S and a family V' : Type™T with a pointed
renaming structure PointedRenModule V', V' bas decidable variables if there

is an instance to the following typeclass.

4.2.4 Correctness!
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* To be completely honest, the particular
example of the A-calculus can be made to
verify the redex hypothesis by designing
the observations more smartly, but still,
we would like to have maximal latitude to
design the language machine as we wish.

DecidableVar V :=
is-var? {T" a} (v: V T @) : Decidable (is-var v)
is-var-irr {T" a} {v: VT a} (p; py: is-var v): p; = py
isvar-ren {L Aa} (v: VIa)(p:T CA):isvar v[p] — is-var v

is-var-irr is quite powerful, it states that there is at most one way to show that
a value is a variable. Assuming unicity of identity proofs (axiom K) on values,
this is equivalent to the more common fact that var is injective. The second
law, is-var-ren, validates the fact that if the renaming of a value is a variable,
then it must have been a variable in the first place. Note that we do not need
to ask the reverse implication: since (var ¢)[p] & var (p ), we can deduce that

is-var v — is-var v[p).

Finite Redexes  The last technical hypothesis is perhaps the most mysterious.
To me it was, at least, and I was quite surprised when I realized I could s#7// not
conclude the eventual guardedness proof of the composition equation with the
two previously presented hypotheses.

In essence, what interlaced positions and telescopic environment buy us, is a
bound on the number of what we call chit-chats. These chit-chats are synchro-
nizations events during the composition, for which the exchanged move (i = 0)
targets a variable ¢ that is associated in the opponent’s environment to a value
which happens to be some variable j. As such, the composition continues with
some new active configuration M .apply (var j) o 7y, which by eval-nf evaluates
instantly to ((j = 0),7y). Hence, in case of such a chit-chat, the original move
(i = 0) isimmediately “bounced” back to the original player with the move (j = 0).
The observation o is the same, but the new variable j is different, in fact it must
have been introduced before 4, which limits the number of bounces. Recalling
that to prove eventual guardedness, the goal is to find a “tau move in the reduction
of the active configuration, it is quite nice to be able to limit the number of such

bounces.

As such, we can assume that after some amount of chit-chat, the active configu-
ration will be of the form M.apply v 0 7, where v s zot a variable. But this is
the surprise, at this point we are completely stuck without any further hypoth-
esis. The natural thing to do would be to postulate that such a configuration
M .apply v 0 y where v is not a variable has a redex, in the sense that its evaluation
necessarily starts with a “tau move, i.e., a reduction step. This requirement would
intuitively make sense: o typically stands for an elimination, so applying an elimi-
nation to something which is not a variable should yield a redex. Alas, I realized
that this was severely restricting the language machine. Even the simply-typed A-
calculus fails this hypothesis*! We thus need a weaker hypothesis.



Concretely the statement of the hypothesis is quite technical, but the idea is
relatively simple. We simply ask for a bound on the number of consecutive times
that the redex hypothesis can fail. As such, although the configuration may not
have a redex right now, we know that after some more composition steps we will

eventually find one.

Technically, it is formulated as follows. If the redex hypothesis fails, it means that
the configuration M .apply v 0 7y happens to be some normal form which will
thus immediately trigger a new message, say (4, 0’). This defines a relation 0’ < o
on observations. We then require that this relation is well-founded.

Definition 4.31 (Finite Redexes):

Assume a scope structure Scopeq S, a binding family O : Bind S T, two
families V, C, and a language machine M : LangMachine O V' C. Pose
O := (a: T) x 0.0p aand define the redex failure relation ., < _: Rel O O
as follows.

i:I'>a; 0,:00pa; 7,:0holeso; {VI»T v: VI a
05:0.0pay 7y:0.holesog VT Hy:isvarv— L
H, : M.eval (M .apply v 0y 7,) & ret ((i=01),77)

bad Hy Hy: 07 < 04

Then, the machine M has finite redexes if the redex failure relation is well-

founded.
FiniteRedexes M := WellFounded <

Remark 4.32: Recall that in type theory, well-foundedness is defined in terms
of inductive accessibility.
Acc{X} (R:Rel X X) (a: X): Prop
[ acc: (V{b} > Rba— Acc Rb) - AccRa

WellFounded {X}: Rel X X — Prop
WellFounded R := (a: X) = Acc Ra

Then, well-founded induction is simply obtained by induction on the accessi-
bility proof.

We are finally in a position to state the correctness theorem.

Theorem 4.33 (Ogs Correctness):
Assuming

* ascope structure Scopep S,

* abinding family O : Bind S T,

* asubstitution monoid of values V' : 'l‘ypcs ‘T with decidable variables,

4.2.4 Correctness!

115
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* asubstitution module over values of configurations C': Type®,
* alanguage machine M : LangMachine O V' C which respects substitution
and which has finite redexes,

then, for any final scope Q2 : .S, the Ogs interpretation is correct with respect

to substitution equivalence at £}, i.e., the following property holds.
V{T} (c1¢2: OT) = [er]as = [eallar = e~ e5

This correctness theorem concludes our presentation of the OGs game and
language machine model. What is left to do is to actually prove it, and this is the
subject of the next chapter.



Ogs Correctness Proof

In Ch. 4 we have constructed the OGs model, interpreting configurations of
a language machine into Ogs strategies. Then we have given the correctness
in the OGs model (i.c., when they have weakly bisimilar strategies), then they
are substitution equivalent, the concretization of observational equivalence for
language machines. The current chapter is now devoted to providing the actual
proof of this statement.

For the entirety of this chapter, we will globally assume all of the hypotheses of

the correctness theorem. Hence we assume given

* ascope structure Scopep S,

* abinding family O : Bind S T,

* asubstitution monoid of values V : TypeS:T with decidable variables

* asubstitution module over values of configurations C': Type®

* a language machine M : LangMachine O V' C which respects substitution
and which has finite redexes,

* afinal scope 2: S.
Spelled out more formally, we assume given elements of the following typeclasses.

SubstMonoid V' DecidableVar V' SubstModuley, C
LangMachineSub M FiniteRedexes M

5.1 Proof Outline

We have already somewhat hinted at the proof strategy and the most important
lemmas in various places. Let us recapitulate the blueprint. To prove the correct-
ness, we will do a detour on composition, as indeed correctness follows from two

properties of composition, congruence and adequacy.

Definition 5.1 (Congruence for Composition):
Weak bisimilarity is a congruence for composition if for all ¥: Ctx S,

st,s3: O(;sg QWand s~ : Ocsy Q W, the following property holds.

sp~ sy = (7 1s7) ~ (53 [1s7)
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Definition 5.2 (Adequacy of Composition,):
The composition operator is adequate if for all T': S, ¢: CT and
v: T —{V}= Q, the following property holds.

eval-to-obs ¢[vy] ~ (HCH;\D{ | H'YHM)

Congruence is quite straightforward to prove, it is yet another instance of our
hard to read and boring relational statements! The most important task is the
proof of adequacy. The idea to prove adequacy boils down to two arguments: first
we show that )\ ¢ 7y = eval-to-obs ¢[7] is a fixed point of the composition equa-
tion and second we show that the composition equation is eventually guarded,
hence has unique fixed points. At this point however, eval-to-obs being a fixed
point of composition does not make much sense, since the composition equation
operates on pairs of OGs strategies while eval-to-obs takes a configuration and
an assignment. To fix this issue we will make two patches, respectively bringing
composition and eval-to-obs to a common meeting point: pairs of machine
strategy states.

First, we will define a second composition equation, called machine composition,
operating not on opagque OGs strategies, but specifically on pairs of active and
passive states of the machine strategy. The definition will be essentially the same,
but instead of peeling off layers of a coinductive tree to obtain the next moves, we

will call the play and coplay functions of the big-step system.

Second, notice thatin the function )\ ¢ 7y = eval-to-obs c[], the two arguments
c and 1y are special cases respectively of active and passive machine strategy states
(more specifically 7nitial states). We will thus generalize this function to arbitrary
pairs of active and passive machine strategy states. Intuitively, this function will
zip together the telescopic environments of the two states, then substitute the ac-

tive state’s configuration by the resulting assignment and finally apply eval-to-obs.

More precisely, to conclude adequacy we will show that

* machine composition is strongly bisimilar to composition,

* zip-then-eval-to-obs is a strong fixed point of machine composition,
* machine composition is eventually guarded.

5.2 Machine Strategy Composition

of type

Arg — Delay (ON Q4+ Arg)



5.2 Machine Strategy Composition

where the arguments
Arg := Ocs Q X Ocsg Q

consisted of pairs of an active strategy s : Ocs,, Q W and a passive strategy
57 : OGsg 2 ¥, both over the same interleaved scope W. To specialize compo-
sition to the machine strategy, we will simply swap out Ocs, Q and Ocsg Q

for active and passive machine strategy states.

Definition 5.3 (Machine Strategy Composition):
First, define the arguments of the machine strategy composition as follows.

MCArg := mstraty, .state™ [X| mstraty; .state™
Then, define the machine strategy composition equation as follows.

m-compo-eqn : MCArg — Delay (ON 0+ MCArg)

m-compo-eqn (st = §7) := aux () mstrat,, .play st

aux (inl r) inlr
aux (inr (m, k)) == inr ((mstraty, .coplay s~ m) = k)

Finally, define the machine strategy composition as the following iteration.

m-compo : MCArg — Delay (ON Q)

Ill—C()Ill})() = lterlll/CUIHPO/CqIl

We then link this new composition of machine strategies with the more general

one, introduced in the previous chapter.

Lemma 5.4 (Machine Composition and Composition,):
For any ¥: Ctx S, st : mstraty, .state” ¥ and s~ : mstraty; .state” U the
following property holds.

m-compo (stes7) = (unroll’ st || unr01171ns1rnnM 87)

mstrat p

Proof: As both sides are constructed by (unguarded) iteration, this lemma
their respective equation systems operate in lockstep, with some relation on
their argument being preserved. More precisely, define the following relation

between the arguments of compositions and machine composition.
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R: MCArg — Ocs, QX Ocsg Q — Prop
R(si=s1) (557 97) =

+ + ot - -
(unroll mstraty, S1 = s2> X (unroll mstraty, S1 = 52)

Then, for any a: MCArg and b: OGSB Q X Ocsg §2, we prove that
Rab— (m-compo-eqn a) &= +" R] (compo-eqn b).

Succinctly, the above proposition is proven by inspecting the head of the
configuration part of the active state a. In case it plays "ret, the conclusion is

direct, while for “tau the conclusion is by coinduction.

obtain the result by instantiating the relation witness R a b by (refl, refl). m

Finally, before moving on, we will prove a variant of the eval-sub law of language
machines respecting substitution. It is a special case which will be particularly
useful at several points.

Lemma 5.5 (Evaluation under Shifted Substitution,):
Foranyc: C (Q 4 I')ando: T {V}= Q, the following proposition holds.

((i=0),7) < evalc;

N view-cat 4

eval efvar, o] = v-left j :=ret ((§= 0),7y]var, o])
[v—rightj := eval (apply (o j) 0 7y[var, o))

Proof: By eval-sub, unfolding the definition of nf-emb, we have the following.

((i=0),7) < evalc;

eval c[var, ] & [eval (apply ([var, o] i) o y[var, a])

The right-hand sides of both the lemma and the equivalence above start by

relate their continuations. Introduce some normal form ((i = 0),). By case

on view-cat 1.

* Ifview-cat i := v-left j, then [var, o] 4 := var j. Conclude by eval-nf, show-
ing that eval (apply (var j) o y[var, o]) & ret ((j = 0), y[var, o]).

* If view-cat ¢ := v-right j, then [var, 0] i := 0 j and we conclude by reflex-
ivity. |



5.3 Evaluation as a Fixed Point of Machine Composition

After defining the machine strategy composition, the next step is to generalize

¢ 7 > eval-to-obs ¢[7] to active and passive machine strategy states and then
show that the obtained function is a fixed point of our newly defined composi-
tion. Our goal is to define a function of the following type.

zip-then-eval : MCArg — Delay (O® )

We start by defining the following zipping of telescopic environments. Recall

into usual assignments. Here the process is relatively similar, but instead of only
one telescopic environment, we are here given fwo, which nicely mesh into one

together.
Definition 5.6 (Zipping Map):
The left-to-right and right-to-left zipping maps of type
0 AT Tele, U — Teleq @ — |70 V] Q
L AT Tele, U Teleq ¥ — | U VS Q

are defined by mutual induction as follows.

S e =

(a >+-::::-) ' (b | 'y) = [b ~ a,’y[var,b A a”
S e =]
(@r’x) ~ (o> 7):=b"a

Remark 5.7: Intuitively, ¥ is concerned with providing hereditarily substi-
tuted values for every variable introduced by the currently passive player (i.c.,
the RHS), while ™ provides hereditarily substituted values for every variable
introduced by the currently active player (i.e., the LHS). It is thus normal that
only ¥ does any real work: since the LHS is always the currently active side,
it did not play the last move and thus did not store anything at the top of its

environment.

Before going further, let us prove the crucial property relating the zipping of two
telescopic environments and their respective collapse. Recall that the collapsing
functions have the following types.

1T Teley @ — |70 Vs (Q 4 [7)

17 Teleq @ — [T V= (Q 4 | 0)
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Lemma 5.8 (Zip Fixed Point of Collapse):
Given U: Ctx S, for any a: Tele, ¥ and b: Teleg U, the following two
statements hold.

(1) ([Ta)[var,a ™ b ~a~b
(2) (" b)[var,a ~ b~ a b
Proof: The two statements are proven simultaneously, by induction on ¥, by
inspecting a and b. While they are slightly tedious, the calculations are purely

equational manipulations of assignments, based on substitution monoid laws.
| ]

Finally, we can define the function we wanted and prove that it is a fixed point of

composition.

Definition 5.9 (Zip-then-evaluate):

The zip-then-evaluate map is defined as follows.
zip-then-eval : MCArg — Delay (O® Q)
zip-then-eval ((¢, a) = b) := eval-to-obs ¢[var, a ¥ b]

Theorem 5.10 (Zip-then-evaluate Fixed Point):

Zip-then-evaluate is a fixed point of the machine strategy composition equa-

tion w.r.t. strong bisimilarity, i.e., for all z : MCArg, the following property
holds.

inl r :=retr )

(zip-then-eval z) & | m-compo-eqn z >>= A | . .
inr y := zip-then-eval y

Proof: Let us consider the composition argument ((c, a) = b). We will reason

equationally, simplifying both sides to the same computation.
Starting from the left-hand side, we rewrite as follows.
zip-then-eval ((¢, a) = b)
& fst (§) eval ¢[var,a ¥ b] (def.)

((i=0),7) < evalc;
view-cat ¢

& fe (§) vleft j i=ret ((j = 0),7y[var,a ¥ b)) (Lemma 5.5)
v-right § := eval (apply (p 7) 0 y[var,a ¥ b])
((i=0),7) + eval c;
view-cat % (monad)

vleft j :=ret (j=o0)
v-right j := eval-to-obs (apply ((a ¥ b) j) 0 y[var,a ¥ b])



5.3 Evaluation as a Fixed Point of Machine Composition

The last computation above is now simple enough. We will remember it and
seek to obtain the same starting from the right-hand side of the theorem state-
ment. To ease the unfolding of definitions, first pose the following shorthands.

inl r = inlr
f = |:

inr (m, k) := inr ((mstrat,; .coplay b m) = k)

inlr :=retr
inr y = zip-then-eval y

Starting from the right-hand side, we rewrite as follows.

inl r :=retr

m-compo-eqn & == | . .
inr y := zip-then-eval y

2

(f () mstraty, .play (¢,a)) ==k (def)
& mstraty, .play (¢, a) == (ko f) (monad)

&

((i=0),7) +eval c;
(view-cat 4)
T = v-left j :=ret (inl (5= 0)) (def.)
[v—rightj :=ret (inr ((f=0),(a > v)))

12

5 (fa)

((i=0),7) + evalc;
(view-cat 1)

~ |:v—leftj =K (f (inl (] . O))) (monad)
I vright 5 2=k (f (inr ((5=0),(a > 7))))
[ ((i = 0),7) « eval ¢

~ (view-cat %) (et

v-leftj :=ret (j=0)
v-right j := zip-then-eval (mstraty, .coplay b (j = 0) = (@ »~ 7))

At this point, our two rewriting chains almost match up, with only the second
branch of the respective case split differing. More precisely, both computations

uations pointwise bisimilar. Then, we eliminate view-cat ¢. In case of v-left j
we conclude by reflexivity. We now turn to the v-right j case. What is left is to
prove is
eval-to-obs (apply ((a ¥ b) j) 0 y[var,a ¥ b])))
& zip-then-eval (mstraty, .coplay b (5= 0) = (a »~ 7¥)).

First pose the following two “administrative” renamings (from the definition

of the machine strategy coplay function).
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pq = [r-caty, r-cat, [r-cat]]
py i= r-cat,[r-cat,].
Then, we start rewriting from the right-hand side.
zip-then-eval (mstraty, .coplay b (5= 0) = (a >~ 7))
& zip-then-eval ((apply (17 0 4)[p1) 0 po, b > ) = (a »~ 7)) (def.)
2 eval-to-obs (apply (1~ b 7)[p1] 0 pa)[var, (b » 7<) ¥ (a » ™ 7)) (def.)
& eval-to-obs (apply (17 b 4)[p1] 0 pa)[var,a =~ b,y[var,a ¥ b]]) (def.)
Pose o := [var,a ™ b, y[var, a ¥ b]] and continue as follows.

pille] o pyla])) (apply-sub)

var,a =~ b] o0 y[var,a ¥ b])) (sub laws)

& eval-to-obs (apply (1 b 7)

& eval-to-obs (apply (1~ b 7)
2 eval-to-obs (apply ((a ¥ b) ) 0 y[var,a ¥ b])) (Lemma 5.8)

This concludes our proof: although tedious, it simply rests upon:

* and a series of basic rewriting steps using the monad laws of Delay and the

categorical structure of assignments. [ |

5.4 Eventual Guardedness of Machine Composition

Now that we know that zip-then-eval is a fixed point of the machine strategy
composition equation, we can conclude adequacy of composition if we know
that the machine strategy composition equation has unique fixed points. We will
deduce this from the fact that the equation is eventually guarded.

Recall that in this precise case, eventual guardedness means that every so many
synchronization events of composition, we will stumble upon a silent step of one
of the two strategies (i.e., a reduction step of their configuration). The number
of synchronizations necessary to see such a reduction step is bounded by two
imbricated arguments. First, by the finite redex property of the language machine,
after some amount of synchronizations where the observed value is not a variable,
we will find a reduction step. Second, by a visibility-like condition, after some

amount of synchronizations, we will observe a value that is not a variable.

More precisely, the “visibility-like” argument states that if some variable 4 is

associated in a telescopic environment to some variable 7, then the depzh of j is
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strictly smaller than the depth of 4, where the depth denotes the number of moves

after which the variable was introduced. Let us define this.

Definition 5.11 (Variable Depth):
Define the positive and negative depth functions by mutual induction as
follows.
depth™ ¥ {a}: [T 5 a— N
depth™ ¢ i:= (view-emp ) []
depth™ (T » T')4:= (view-cat %)
v-left 4 := depth™ ¥4
v-right ¢ := 1 4 length ¥
depth™ ¥ {a}: | T5a—N
depth™ ¢ i:= (view-emp ) []
depth™ (U » T') ¢ := depth™ U ¢
Lemma 5.12 (Depth Decreases):
The depth of a variable stored in a telescopic environment is strictly smaller
than its index. More precisely, the following two statements are true.
(1) Given an environmenta : Telel, ¥ and variablesi: | " ¥ 5 o and
Jj:17¥ > asuchthat | " ai = var (r-cat, j), then
depth™ j < depth™ ¢
(2) Given an environmenta: Tele, W and variablesi: |~ ¥ 5 aand
Jj:17¥ > asuchthat |~ ai = var (r-cat, j), then

depth™ j < depth™ ¢

Proof: The two statements are proven simultaneously, by direct induction on

the graph of the depth function at . | |
We can now prove eventual guardedness.

Theorem 5.13 (Composition Eventually Guarded):

The machine strategy composition equation m-compo-eqn is eventually

guarded.

Proof: More formally, the goal is to prove eqn-ev-guarded m-compo-eqn, i.e.,
(a: MCArg) — ev-guarded

(IIl—COIHpO—CqH a) .

m-compo-eqn
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Introducing and fully destructing the argument a as ((¢,0™) = 67), obtain

c:C(Q+ |TW), 0" : Tele, Uand o~ : Tele W. As m-compo-eqn starts

by evaluating c, lets look at the first step of eval ¢:

* Ifitisa “tau step, we directly conclude by guardedness ("ev-guard).

* If it is a return “ret ((¢ = 0),7y) where 7 belongs to the final scope 2, the
composition returns and we conclude again by guardedness (“ev-guard).

* In the last case, where eval ¢ returns as above, with 7 a non-final variable, we
arrive at the core of the proof and continue as follows.

Recapitulating, we can now forget about ¢, we still have ot and 0~ and we
now have i: |"¥ > @, 0: O.op @ and y: O.holes o [V} (Q 4 | 70).

Our goal is now to prove

ev-guarded

ﬂl'(l)lnpﬂ'cqﬂ
(ree (inr ((apply (L~ 07 )[p1] 0 pg), 07) = (a7 > 7))
with the usual culprits p; := [r-cat;, r-cat, [r-cat]] and py := r-cat,.[r-cat, ].

Proceed first by well-founded induction on (e, 0) (using the finite redex
hypothesis FiniteRedexes), and then by well-founded induction on the depth
of 4. This does not change the proof goal but simply introduces two induction

hypotheses.

As obviously the current computation is not guarded, first apply “ev-step to

unfold one more step of the equation, obtaining the following goal

ev-guarded,, compo-cqn (m-compo-eqn

((apply (L 07 D)[pr] 0 pa), 07) = (™ > 7).
Then, by case on whether or notv := |~ 0~ i is a variable (is-var?).

* Ifvissome variable j: (Q 4 |~ ¥) 5 @, the apply expression is in fact the
embedding of the normal form ((p; j = 0), py). Thus, by eval-nf we know
its evaluation. Then by case on view-cat j:

» If j: Q5 a, the composition ends with (j = 0), thus is guarded.
the next context increment into account by moving from ¥ to
U » O.holes o, we deduce depth™ (r-cat; j) < depth™ ¢ and conclude
by the innermost induction hypothesis.

* If v is not a variable, pose ¢ := apply v[p;] 0 p, and inspect the first step
of eval c.

» Ifitisa "tau move, then the composition is guarded.
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» Ifitisa "ret ((k = 0"),d), then, by case on view-cat k. If k is a final move
then composition is guarded. Else k is non-final and we conclude by

applying the outermost induction hypothesis, as indeed 0’ < o. |

5.5 Conclusion

is left to do is mostly to combine them in the right way to deduce adequacy. Still,

to finish up and deduce correctness we have left out one benign step described

Lemma 5.14 (Congruence for Composition):
For all ¥: Ctx S, sf, s; : O(Zsé QW and s7: Ocsg U, the following
property holds.

s~ sy = (7 [1s7) ~ (s3]l s7)

Arg := OGsp Q X Ocsg Q2
R: Arg — Arg — Prop
R(s7=s1)(s3-83)=(s] ~s3) x (Vr—syr~syr)

It is easy to show that R is preserved by the composition equation, then, by

application of Lemma 2.72 the result follows. n

Theorem 5.15 (Adequacy of Composition):
Foralll': S,c: CTandy: T' {V}= Q, the following property holds.

eval-to-obs ¢[y] =~ ([c]as || [¥]ar)

Proof: Embedding c and y respectively to initial active and initial passive states
of the machine strategy, by definition we have

eval-to-obs ¢[y] & zip-then-eval ((¢[r-cat,], (e~ »T2)) = (67 »~ ~[r-cay]))

is pointwise strongly bisimilar to its eventually gnarded iteration. Continuing
the above chain we obtain the following.

eval-to-obs C[’Y] & ev»iterm«cnmpnrcqn ((C[I“Cat,r], (E > )) " (E g ’y[r-catl]))
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the unguarded iteration, i.e., m-compo. We obtain the following.

eval-to-obs ¢[y] &~ m-compo ((¢[r-cat,], (¢~ »F:%)) = (€T »7 A[r-cat)]))

compositions and opaque composition.

eval-to-obs e[y] ~ [e]ar || [¥]ar n

Proof: Given ¢y, cy: C T such that
ler]as ~ lea]ars
foranyy:I' {V}+ Q wehave

eval-to-obs ¢;[v] ~ ([e1]ar || [V]az) (Theorem 5.15)

~ (lealar 1 0la)  (Lemma 5.14)
~ eval-to-obs ¢4[7] (Theorem 5.15) -

To conclude this chapter, and with it the proof of the central result of this thesis,
let me say a couple words about its significance. First of all, OGs models which
are sound with respect to observational equivalence have already been published,
some in fact for instances which we do not cover here, such as, say, impure
languages with references [54][48]. As such, although there is some progress
in providing a generic proof for all languages which are expressible as language
machines, I believe that the core contribution is in the way we streamline the
correctness proof, hopefully making it accessible to a broader community. There
are two novelties which contribute to this.

First, by working with an abstract language machine, we can more precisely see
and isolate which parts of the proofs are generic and which parts are language
specific. This has led us to formalize precise requirements, as well as recognize
previously hidden details, such as the finite redex hypothesis.

Second, while the decomposition into an adequacy and congruence proof for
composition is common, in published articles, adequacy is typically proven
monolithically. The method provided here further decomposes adequacy into

two independent arguments, each quite informative on its own.

adequacy: one step of composition does not change the result obtained by syntac-

tically substituting the two machine strategy states and evaluating the obtained



language configuration. Satistyingly, the proof is quite direct and relatively free
of administrative headaches: it is simply a sequence of rewriting step.

Knowing this, one should not be blamed for thinking it is enough to conclude
adequacy. After all, if one composition step leaves the final result unaltered, why
should it be any different after an infinite number of steps, i.e., full composition?
Butarbitrary fixed points of partial computations can behaved surprisingly. Thus,
asecond argument, T’

informal reasoning: the composition equation is “nice” enough and thus enjoys
unicity of fixed points.

I hope that this separation between the high-level argument and the tedious
technical justification demystifies the adequacy proof, and enables a better under-

standing of it by non specialists. In particular, it opens up an intermediate level of

5.5 Conclusion
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Normal Form Bisimulations

Operational game semantics is intimately linked to another slightly older
family of coinductive constructions: normal form bisimulations. Building upon
SANGIORGTI’S open bisimulations [85], the term was coined by LASSEN [56][57]
as an umbrella for coinductive operational characterizations of the equivalences
induced by several related constructions such as BoHM trees, LEvY-LONGO trees,
LassEN trees and others tailored to a variety of languages. They distinguish
themselves from the other big family of applicative bisimulations [4] mainly by
using fresh variables instead of a closed values as arguments to observations.

In this short chapter, we start by introducing our own variant of normal form
bisimulation, for any given language machine (§6.1). Then, in §6.2 we show how
the interpretation from language configurations to OGs strategies can be factored
through normal form strategies. Thanks to this, we deduce a correctness theorem,
stating—as for OGs—that any two normal form bisimilar language configura-

tions are substitution equivalent.

Remark 6.1: Be advised that at the time of writing these lines, the construc-
tions and proofs contained in this chapter are only sketched in our Rocq
artifact. As we will see the proofs are not particularly challenging, but this part

came in quite late during the thesis. I invite you to check the online repository

[85] Davide Sangiorgi, “A Theory of Bisim-
ulation for the pi-Calculus,” 1993.

[56] Seren B. Lassen, “Eager Normal Form
Bisimulation,” 2005.

[57] Seren B. Lassen, “Normal Form Simu-
lation for McCarthy's Amb,” 2005.

[4] Samson Abramsky, “The lazy lambda
calculus,” 1990.

https://github.com/lapinOt/ogs

to see if this has been fixed by the time you are reading.

6.1 Normal Form Bisimulations in a Nutshell

Implicitly or explicitly, the main idea in all normal form (NF) bisimulation
constructions, is to associate to each program a possibly infinite tree intuitively
representing its infinitely expanded normal form. Here, we will call these trees
normal form strategies, that is, strategies for the normal form game. This induces
a notion of program equivalence which holds whenever two programs have

bisimilar associated strategies: normal form bisimilarity.

These infinite trees are constructed by reducing the program to a normal form
for some given reduction strategy—most usually some kind of head-reduction.
The “head” of the normal form gives us the node of the tree, while the children
are obtained by coinductively applying the same process to all subterms of the
normal form. By now this process of splitting a normal form into a head and a
sequence of subterms should ring a bell... Although OGs and NF bisimulations

have historically been introduced in reverse order, we can use our readily available


https://github.com/lapin0t/ogs
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knowledge of the OGs game to provide a very succinct and precise description
of the normal form game. The NF game is nothing but a restriction of the Ogs
game, where the server is only allowed to query the variables introduced by the

last client move.

Reusing our existing infrastructure of binding families and named observations,
we express the NF game quite similarly to the naive OGs game, slightly changing
the game positions and transition functions. Since the allowed server moves are
dictated by the /ast client move, only the client scope needs to be threaded
throughout the game positions. As such, client positions consist of a single scope
I, containing the variables the client is allowed to observe, while server positions
consist of two scopes (I', A), containing the variables that respectively the server

and the client are allowed to observe.

Definition 6.2 (NF Game):
Assuming a scope structure Scoper S, given a binding family O : Bindp S,
the normal form (NF) game is defined as follows.

NFrg : Game S (S x 8) :=

client :=

Move I := O% T’
|:11€Xt {T'} 0:= (holes® 0, T")
server :=

Move (I'; A) := O¥ T
next {T', A} 0 := A 4 holes® o

We then define active and passive normal form strategies with respect to a final

scope €1, as for OGs strategies.

Definition 6.3 (NF Strategies):
Assuming a scope structure Scopeq S, given a binding family O : Bindp §
and a scope §): S, active and passive normal form strategies over O with final

scope €2 are defined as follows.
Nr, QT := Stmt*xr«o (A= 0"Q)T
Nrg QT A= Strat o) (AT 0% Q) (T,A)

Remark 6.4: Note that Nr, € is isomorphic to an assignment type. Indeed,
define “unary” passive strategies as follows.

Nrg Q: TypeST
Nip QT a:=(0: 0.0p a) = Nrj Q (T 4 O.holes o)
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Then, Nrg Q I' A is isomorphic to I' —{ Nrj, |+ A, as witnessed by the
following two conversion functions, definitionally inverse to each other.

intos”" 40 =8 (i=0)

fromo (i=0)i=0io0

In light of this, we will extend standard assignment notations to passive strate-
gies, in particular the initial arrow and the copairing.

I:Nig QB A [k, ky]: Nig Q (I 4 Ty) A

[] := from |] [kq, ko] == from [into kq,into ko)

Given a language machine with renamings, we now construct the strategy asso-
ciated to any given language configuration. Once again, it is merely a simplified
version of the (naive) OGs machine strategy: it proceeds by evaluating the current
language configuration to compute the next move, and using the application map
to respond to queries.

Definition 6.5 (NF Strategy):

Given a language machine M : LangMachine O V' C' with renamings, i.c.,
such that PointedRenModule V and RenModule C hold, given a final scope
Q: S, the NF machine strategy is the big-step system defined as follows.

Nr-mstrat M : Big-Step»Systemxlb ( T+~ OF Q)
Nr-mstrat M :=

statet T':=C (Q #T)
state (I, A) :==T —[VI= (Q 4 A)
play ¢ :=
((t=0),7) < eval c;
(view-cat %)
v-left ¢ := ret (inl (i = 0))
v-right j := ret (inr ((j = 0),7))
coplay y (i = 0) = apply (7 i)[p1] 0 py

pq = [r-caty, r-cat,.[r-cat;]]

pg = r-cat, [r-cat,]

Definition 6.6 (NF Interpretation, NF Bisimulation):

Given a language machine M : LangMachine O V' C' with renamings, i.e.,
such that PointedRenModule V and RenModule C hold, given a final scope
Q: S, the NF interpretation is obtained by unrolling the NF machine strategy.

133
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[ {T}:CT — Nrg Qr
HCHM = unrO”ANr—m\‘lr.u M c[r—cat,,]

Furthermore, two configurations ¢, cy: C'I' are normal form bisimilar

whenever [[Clﬂlj\\l/} ~ [[Czﬂll\jvf

6.2 NF Correctness through Ogs

To deduce correctness of NF bisimulation from our OGs correctness theorem,
we need to relate NF strategies and OGs strategies. First, since the NF game is very
close to the OGs game, simply allowing less server moves, it is easy to restrict an

OGs strategy to an NF strategy.

Definition 6.7 (OGS to NF):
Assuming a scope structure Scopeq S, given a binding family O : Bind S
and a scope 2 : S, define the restriction from OGs to NF strategies by coinduc-

tion as follows.

OGs-to-Nr" {¥}: Ocs5 QU — N, Q (170)
OGs-to-Nf" s :=

out := s.out
‘retr = retr
“taut = "tau (OGs-to-Nr+ t)
“vis ¢ k := "vis ¢ () (i = 0) b Ocs-to-Nrt (k (r-cat,. i = 0)))

Yet the most interesting direction is the other one: embedding NF strategies into
Ogs strategies. In the OGs game, the server is also allowed to query older vari-
ables, which, on the face of it, an NF strategy does not know how to respond to.
However, every variable was once new! So if we remember all the continuations of
an NF strategy along the way, we can accumulate enough information to respond
to any OGS server queries, by restarting the relevant old continuation. In order to

do so, we will first need a small helper to rename the scope of NF strategies.

Definition 6.8 (NF Strategy Renaming):
Assuming a scope structure Scopeq S, given a binding family O : Bindp S
and a scope Q: S, define the active and passive NF strategy renamings by

mutual coinduction as follows.
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Neren™ {Q}: Ne5, Q =+ [(3),Nr5 Q]

NE-ren™ s p = This is in fact the definition of the action
of two renaming structures, on Nr é Qand
out := s.out Nig QT.
‘retr = "retr
“tau t := "tau (NF-ren* ¢ p)

“vis (= 0) k:="vis (pi=0) (Nr-ren™ k p)

Nre-ren” {QQT}: Nrg QT = [(2),Nrg QT

Nre-ren” k pm := Ne-ren™ (km) [p - r-cat;, r-cat, ]

Remark 6.9: Our definition of the renaming action makes use of the internal

types can be spelled out more explicitly as follows.

Nrren™ {Q A a} (s: Nrgy QA ) {A}: A C Ay - Ny QA
Nrren” {QT A} (s: Nrg QT Ay) {Ay}: Ay C A, = Nig QT A,
Definition 6.10 (NF to OGs):
Assuming a scope structure Scopeq S, given a binding family O : Bind, S
and a scope §2 : S, define as follows the active and passive embedding from NF
strategies to OGS strategies.
Nre-to-Ocs ™ {QU}: Ney Q (L70) = Nig Q (L 0) (L7F) = Ocs, Q¥

Nr-to-OGs™ s ks :=

out := s.out
‘retr = retr
‘taut = "tau (NF-to-Ocs™ t ks)

“vism k := "vis m (Nr-to-Ocs™ [ks, k])

Nr-to-Ocs™ {QU¥}: Neg Q (L70) (7¥) = Ocsp QU
Nr-to-Ocs™ ks m := Ne-to-Ocs™ (ks m) (Nr-ren™ ks r-cat,.)
Finally, define the following shorthand, embedding NF strategies to OGs
strategies over an initial position.
Nr-to-Ocs {QQT}: Nr, QT — Ocs, Q2 (e » 1)
Nr-to-OGs § := NF-to-Oas™ s [|
We can now show that the Ogs interpretation can be factorized through the NF
interpretation. However, because the coinductive call of N¥-to-OGs™ happens

onarenamed strategy, renamings will creep up during the bisimulation proof. For
this reason we first need to prove an up-to-renaming reasoning principle for Nr
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strategies, essentially stating that any NF bisimulation candidate is closed under

renamings.

Lemma 6.11 (NF Bisimulation Up-to Renaming):

Assuming a scope structure Scopep S, a binding family O : Bindy S and a
scope Q: S, then Nr-ren™ {0} respects any strong or weak bisimulation
candidate, i.e., for any

or F € Tower

G whbisimy,c 7
‘\]O ‘\'O

F € Tower

sbisim

the following property holds.
Nre-ren™ (V'F (=) =" [(=).F (=)]") Ne-ren”

Proof: Both statements (weak and strong) are proven by direct tower induc-

tion. ]

that Nr-ren™ respects both weak and strong bisimilarity.

Theorem 6.13 (Ocs Through NF Factorization):

Given a language machine M : LangMachine O V' C with renamings and a
final scope €2 : S, the OGs interpretation factorizes through the NF interpre-
tation. More precisely, for any ¢ : C' T, the following property holds.

lelis =* Nr-to-Oas ([e]hs)

Proof: The only trick required to prove this is to generalize the statement to
arbitrary OGs game positions and machine strategy states. We prove that for
any U: Cex S, ¢/ : C (4 ["T) and e: Teley, U the following property
holds.

+ ’
unroll™ (" =€)

& Nr-to-Ocs™ (unroll ™\, s ar € (unroll ™\ e a2 (7€)

This statement is then proven by direct tower induction, unfolding the defin-

application, taking ¥ := ¢ » T, ¢/ := c[r-cat, ] and e := []. [ ]

In order to finally prove NF bisimulation correctness, we still need to show a

technicality, namely that Nr-to-OGs respects weak bisimilarity.

Lemma 6.14 (Nr-10-OGs Respects Weak Bisimilarity):
Assuming a scope structure Scopep S, a binding family O: Bindp S,
NE-t0-OGs respects weak bisimilarity, i.c., the following property holds.

Nr-to-OGs (V" ~ =" a)) NF-to-OGs



6.2 NF Correctness through OGs 137

Proof: We generalize the statement and show that Nr-to-Ocs™ respects weak

bisimilarity:
Nr-to-Ocs™ (V" ~ =" &~ =" ~) Nr-to-Ocs ™

with ~~ denoting pointwise weak bisimilarity of passive strategies. This state-

required. n

We can now prove the normal form bisimulation correctness theorem.

Theorem 6.15 (NF Correctness):

Given a language machine M : LangMachine O V' C' with renamings, i.e.,
such that PointedRenModule V" and RenModule C hold, given a final scope
Q: S, NF bisimulation is correct w.r.t. OGs bisimulation, i.., for any I': S

and ¢y, ¢y : C' T, the following statement holds.
lealhs = lealnr = lerlar = lealas

Proof: Assume c; and ¢, such that [¢; |3 ~ [c] 3

ler]ar 2 Ne-to-Oas ([[eq]hy) (Theorem 6.13)
~ Nr-to-Ocs ([eo]3f) (Lemma 6.14)
~ [ealar (Theorem 6.13) -

The above correctness theorem concludes the treatment of normal form bisim-
correctness w.r.t. substitution equivalence, we can directly deduce that NF bisim-
ulations are correct w.r.t. substitution equivalence. Since the server is allowed
to play less moves in the NF game than in the OGs game, it is naturally easier
to prove that two language configurations are normal form bisimilar than Ogs
bisimilar. As such, to prove substitution equivalence of two concrete programs,
the NF correctness theorem is a more practical entry point than the OGs correct-
ness theorem. In fact in the realm of program equivalence for languages without
state or polymorphism, it can be argued that OGs is merely a technical device for
proving NF correctness. And indeed, in a line of work by LAsseN and LEvy [58]
[59], an early appearance of an OGs-like construction can be seen during the NF

correctness pl‘OOf.

There is definitely a number of side results on NF strategies which we have glossed
over. Indeed, much of the above constructions and proofs are still to be written in
the Rocq artifact, and it is quite uncomfortable to program without the safety
net of an actual type checker! Among the presumably low hanging fruits, proving
the injectivity of Nr-to-OGs would give us the reverse of the above implication,
in other words that the NF model is correct and complete w.r.t. the OGs model.

[58] Seren B. Lassen and Paul Blain
Levy, “Typed Normal Form Bisimulation,”
2007.

[59] Seren B. Lassen and Paul Blain Levy,
“Typed Normal Form Bisimulation for
Parametric Polymorphism,” 2008.
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There is also much more to say on the relationship between the NF game and the

Oas game, but we leave this thorough study for future work.



Ogas Instances

In Ch. 4 we have seen a language-generic OGs construction, parametrized by an
abstract notion of language machine. We have even seen a shiny theorem, correc-
tion for this model w.r.t. substitution equivalence, our variant of observational
equivalence. Hopefully some intuitions from the introduction helped under-
stand these abstract constructions, but it is now time to look at some concrete
examples. In this chapter we try to show a small but representative collection of
calculi that are covered by our abstract theorem. We start with two calculi neatly
fitting our language machine presentation, finally showing the driving intuitions
behind our axiomatization. To warm up we start with perhaps the simplest one:
Jump-with-Argument (§7.1). We then follow up with a much more featureful
language, polarized ufi-calculus (§7.2). Then, in §7.3, we look at a language which
for several reasons does not look like the prototypical language machine, but still
can be twisted (rather heavily) to fit our axiomatization: pure untyped A-calculus

under weak head reduction.

Remark 7.1: Be advised that at the time of writing these lines, the set of exam-
ple calculi presented in this chapter is not exactly the same as the one present
in our Rocq artifact. Their respective features are broadly the same, and our
present choice is guided by making this collection more comprehensive. I invite

are reading.

7.1 Jump-with-Argument

7.1.1 Syntax

Jump-with-Argument (Jwa) was introduced by LEVY [60] as a target for his szack
passing style transform of Call-By-Push-Value (CBPV). As such, itis a minimalistic
language with first-class continuations centered around so-called non-returning
commands: an ideal target for our first language machine. We direct the interested
reader to two existing constructions of NF bisimulations and Ogs-like model for
increasingly featureful variants of Jwa by LEvy and LassEN [S8][59]. This is
a typed language, so as is usual, there is some leeway regarding which types are
included. As we are aiming for simplicity, we will only look at a representative
fragment featuring three types of values: booleans B, continuations —A and
pairs A x B. This language is strongly normalizing, although it is not directly

obvious from the evalutator and usually proven by a reducibility argument. As

https://github.com/lapinOt/ogs

[60] Paul Blain Levy, Call-By-Push-Value:
A Functional/Imperative Synthesis, 2004.

[58] Seren B. Lassen and Paul Blain
Levy, “Typed Normal Form Bisimulation,”
2007.

[59] Seren B. Lassen and Paul Blain Levy,
“Typed Normal Form Bisimulation for
Parametric Polymorphism,” 2008.
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Note that we do not include the standard
let v in ¢ command, as it can be simply
derivedasv " v c.

such, although we know that the evaluator is semantically quite simple, we will
still benefit from our framework allowing for non-termination, by simply side-

stepping any proof of totality of said evaluator.

The language consists of two judgments: non-returning commands and values.
Commands play the role of the configurations of an abstract machine, and are
only parametrized by a scope. They are of three kinds: sending a value to a contin-
uation (the eponymous “jump with argument”), splitting a value of product type
into its two components and case splitting on a boolean. Values are parametrized
by a scope and a type and can be either a variable, a continuation abstraction
which binds its argument and continues as a command, a pair of values or a
boolean. Let us present its syntax by an intrinsically typed and scoped represen-
tation inside type theory.

Definition 7.2 (Syntax):
Jwa types are given by the following data type.
typ : Type

B: typ
TLtyp = typ
o X Lt typ = typ = typ

Define the two syntactic judgments by the following two mutually inductive
data types.
o Cx typ — Type

F'.: Ctx typ — typ — Type

o

We will also use the shorthands cmd := _ - and val := _ " _ when it is more

practical. The constructors are as follows.

z:I'5 A

varz: T H A true: 'Y B false: T H' B

c:T'» AbFS v:I'"A w:TH B

vye:TH —A (vw):T'H Ax B

v:T B ¢ :TF ¢:TH  v:TH A k:TH A

case v in [¢y,c9] : T < v, k:T ke

v:lF AxB ¢:T'» A» BFS

splitvin ¢: T' k¢

Remark 7.3: Among the surprising elements is probably the continuation

abstraction 7y c. Intuitively it can be understood as a A-abstraction, but which



never returns. As such, its body is not a term as in A-calculus but a non-
returning command. The “jump-with-argument” v k can then be seen as

the counter-part to function application, written in reverse order.

Lemma 7.4 (Substitution):

Jwa values form a substitution monoid, and JwA commands form a substitu-
tion module over it. Moreover, val has decidable variables. In other words, the
following typeclasses are inhabited: SubstMonoid val, SubstModule val cmd
and DecidableVar val.

Proof: Although quite tedious, these constructions are entirely standard [37]
[13]. One essentially starts by mutually defining the renaming operation on
commands and values, unlocking the definition of the weakening operation
necessary for substitution. Then, on top of this, one mutually defines the
substitution operation, giving the monoid and module structures. The proofs

of the laws as similarly layered. n

7.1.2 Patterns and Negative Types

The next logical step is the definition of the evaluation. Informally, the reduction

rules are defined on commands as follows.

v,/ ve < clvar,v)

split (vw) ine <w  ¢[var, v, W]

casetruein [cy,cq] ¢
2

case falsein [¢;,¢5] Co

However, recall that in a language machine, the evaluator should return a normal
form configuration, which is to be expressed using a binding family of observa-
tions. As the definition of observations is central and essentially decides the shape

that the OGs model will take, let us take a small step back.

Recall from the introduction (§1.3) that in OGs models, depending on their type,
some values are “given” to the opponent as part of a move, while some other are
“hidden” behind fresh variables. We did not, however, worry about this distinc-
tion at all during our generic development, as we simply assumed there was a set
of types T' and worked on top of that. This discrepancy is simply explained: what
the generic construction considers as #ypes should not be instantiated to all of
our language’s types, but only the ones that are interacted with, i.., the “hidden”

tprS.

Most eloquently described in the case of CBPV [60], this split occurs between
types that have dynamic behavior, the computation types and the ones that have
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[37] Marcelo Fiore and Dmitrij Szamoz-
vancev, “Formal metatheory of second-or-
der abstract syntax,” 2022.

[13] Guillaume Allais, Robert Atkey, James
Chapman, Conor McBride, and James
McKinna, “A type- and scope-safe universe
of syntaxes with binding: their semantics
and proofs,” 2021.

Note the usage of the assignments [var, v]
and [var, v, w] for substituting only the top
variables, leaving the rest unchanged (with
the identity assignment var).

[60] Paul Blain Levy, Call-By-Push-Value:
A Functional/Imperative Synthesis, 2004.
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[71] Conor McBride and James McKinna,
“The view from the left,” 2004.

[12] Guillaume Allais, “Builtin Types
Viewed as Inductive Families,” 2023.

static content, the value types. For concision we will call them respectively negative
and positive types. Although the concrete assignment of types to either category
can be somewhat varied, obtaining models with different properties, for Jwa it s
most natural to decide that continuations are negative types while booleans and

pairs are positive.

Definition 7.5 (Negative Types):
The definition of Jwa negative types is based on a strict predicate picking out
the continuation types.

is-neg: typ — SProp

neg

is-neg B =1 typ"® := [, is-neg
is-neg —-A =T ctx™e8

= f(lrx typ (AH is—neg)
is-neg (A x B) = L

Remark 7.6: Note that to manipulate the above contexts and types, we will

Further, as is-neg is trivially decidable, we will allow ourselves a bit of informal-

neg

ity by using —A as an element of typ"¢, instead of the more correct (—A4, *).
Moreover, we will do as if elements of typ"® could be pattern-matched on,
with the sole pattern being —A, although technically this has to be justified

with a view [71][12], adding a small amount of syntactic noise.

Lemma 7.7 (Restricted Values and Commands):

The family of values and commands restricted to negative scopes and types

defined as

(AT a > val T fst aufst) : Type‘“m‘ 2P

(AT + cmd D.fst) : Types™™

again form respectively a substitution monoid and a substitution module, with

).

We will overload the notations val and cmd for both the unrestricted and

respect to the subset scope structure (D

restricted families. Similarly we will stop writing the projection fst and implic-

itly use it as a coercion from negative types and scopes to normal ones.

Proof: By n-expansion of the records and functions witnessing the unrestricted

structures. |

For these negative types, i.e., continuations, we need to devise a notion of obser-
vation which will make up the content of the OGs moves. The only sensible
thing to do with a continuation —A is to send it something of type A. As our

goal is to hide continuations from moves, this something should be void of any
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continuation abstraction. This can be recognized as the set of ultimate patterns

of type A, i.e., maximally deep patterns of type A.

Definition 7.8 (Ultimate Patterns and Observations):
Define the inductive family of ultimate patterns pat: typ — Type with
the following constructors.

p:pat A gq:pat B

truel : pat B false? : pat B My :pat —A  (p,g)P: pat (A x B)
Define their domain by the following inductive function.

dom {A}: pat A — Crx typ"®
domm, :=e» -4

dom true? :=

(L)

dom false? :=

(O}

dom (p,q)? := domp + domg

Finally define observations as the following binding family.
obs: Bind ctx"8 typ™®

Op ~A:=pat A
holes p := dom p

obs :=

Remark 7.9: The continuation pattern M 4 should be understood intuitively
as the pattern consisting of one fresh variable. This is comforted by the fact
that its domain is indeed a singleton scope. More generally, the domain of a
pattern collects the set of continuations inside a value, when seeing patterns as
a subset of values.

The first thing to do with ultimate patterns is to show how to embed them into

values.

Definition 710 (Ultimate Pattern Embedding):
Ultimate patterns can be embedded into values, as witnessed by the following
inductive function.

p-emb {A} (p: pat A) : domp " A

-emb W 1= var top
P A P
p-emb trueP := true
p-emb false? := true

p-emb (p,g)” = ((p-emb p)[r-cat;],(p-emb g)[r-cat,])
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The next step is to do the reverse: given a value whose scope is entirely negative (as
will happen during the OGs game, since only negative variables are exchanged),

split it into an ultimate pattern and a filling assignment.

Remark 7.11: The fact that we only do this in negative scopes is important as
we will be able to refute the case of, e.g. a variable of type 3. Indeed, assuming
a scope structure Scopeq S and a predicate P : Prop”, define the following
function, “upgrading” a type into a proof that it verifies PP, provided we know
that it is a member of a P-subscope.

eleupgr {T': [g (Al P)} {z}:Tfst52 — Pz

elt-upgr ¢ := I'.snd 4

Definition 712 (Value Splitting):
Define the following functions, splitting values in negative context into a

pattern and an assignment over its domain.

split-pat {T': cex™8} (A eyp): T H A — pat A

split-pat B (var ) := ex-falso (elt-upgr %)
split-pat B true  := trueP

split-pat B false := false?

split-pat = A v =My

split-pat (A x B) (var ) := ex-falso (elt-upgr %)
split-pat (A x B) (vw) := (split-pat A v, split-pat B w)”

split-ill {T': ctx™5} A (v: T - A): dom (split-pat v) - val |5 T
split-fill B (var i) == ex-falso (elt-upgr 1)

[
[
[

split-fill B true
split-fill B false  :
split-fill —A v :
split-fill (A x B) (var 1) := ex-falso (elt-upgr 7)

split-fill (A x B) (vw) := [ split-fill A v, split-fill B w ]

v]

Before moving on towards evaluation, we can prove our first interesting lemma,
namely that splitting a value and refolding it yields the same value unchanged and
that this splitting is unique.

Lemma 7.13 (Refolding):
The following statements holds.

(1) ForallT': cex"¢, A: typandv: I' " A,
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(p-emb (split-pat v))[split-fill v] = v.
(2) Foralll': cex™, A: typ,p: pat Aandy: dom p —{ val | T,

(p, ) = (split-pat (p-emb p)[7], split-fill (p-emb p)[7]).

Note the second equation lives in (p: pat A) x (dom p —{ val | T'), with
extensional equality ~ here meaning equality on the first projections and
pointwise equality on the second.

Proof: Both by direct induction, following the same case pattern as split-pat
and split-fill. n

7.1.3 The Jwa Language Machine

Lets recapitulate where we stand in the instantiation. We have defined the neg-
ative types typ"® and scopes ctx"¢, as well as the matching observation family
obs: Bind ctx"® typ"®. We have defined values val and commands cmd over
general types and then restricted them to negative types and scopes. To instantiate
a language machine, this leaves us to define the evaluation and application maps,

which have the following types.
eval {T': ctx™®} : cmd T — Delay (N£2)" T')
apply {T": ctx™€} {A: typ™e} (v: val T' A) (0: obs.Op A)
: obs.holeso —|{val | T' - cmd T’
Let us start with the evaluation map. Although it is not really necessary, for clarity
we will implement an evaluation step function, taking a command to either a

normal form or to a new command to be evaluated further. The evaluation map

is then simply obtained by unguarded iteration in the Delay monad.

Definition 714 (Evaluation):
Define evaluation by iteration of an evaluation step as follows.

eval {T': cox™8} e emd ' — Delay (Nf\‘l‘f“ F)
eval := iter (ret o eval-step)

eval-step {I': ctx"¢} : emd ' — Nf* T' + cmd T

val
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eval-step (case (var4) in [¢;,¢5]) = ex-falso (elt-upgr %)

eval-step (casetruein [¢q,¢5])  i=inre;

eval-step (casefalsein [cy,¢5])  :=inre,

eval-step (v var %) := inl ((4 = split-pat v), split-fill v)
eval-step (v v ¢) := inr ¢[var, v

eval-step (split (var ¢) in ¢) := ex-falso (elt-upgr 7)

eval-step (split (v,w) in ¢) := inr ¢[var, v, W]

The next and final step is to define the application map, which is easily done. The
target type

apply {T": cex™€} {A: typ™e} (v: val T' A) (0: obs.Op A)
: obs.holeso [ val | I' - cmd T’
is perhaps slightly scary, but this is largely due to the fact that A is quantified over
negative types, instead of explicitly asking that it is a continuation type. This is

an artifact of the language machine axiomatization and in this case it would be

better written with the following isomorphic representation.
apply {T: cex"e} {A: typ} (v:valT' =A) (o: pat A)
:domo {val | T'— cmd T

What needs to be done is then more clear: embed the pattern, substitute it by the

given assignment, and send the whole thing to the continutation value v.

Definition 715 (Observation Application):
Define observation application as follows.

apply {T': cex™e} {A: typ™e} (v: valT' A) (0: obs.Op A)
: obs.holeso —|{val | T' = cmd T'
apply {T'} {—~A} vo v = (pembo)[y] v
We now have everything to instantiate the Jwa language machine.

Definition 716 (Language Machine):
The Jwa language machine is given by the following record.

Jwa : LangMachine obs val cmd

eval := eval
fwa = | PP = apply
: eval-ext := ...

apply-ext :
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Note that apply-ext is proven by direct application of sub-ext from the substi-
tution monoid structure of values. eval-ext is obtained by simple rewriting, as

extensional equality of commands is simply propositional equality.

By the above definition we can already instantiate the OGs model, but to obtain
correctness w.r.t. substitution equivalence, we need to verify the hypotheses of

Lemma 7.17 (Jwa Respects Substitution):
The Jwa language machine respects substitution, i.e., the following typeclass

is inhabited: LangMachineSub Jwa.

Proof:
eval-sub  GivenT', A: ctx"¢, ¢c: cmd I"and 0 : T —{ val |+ A, we need to
prove the following.

eval e[o] & eval ¢ == A\ n > eval (nf-emb n)[o]

Proceed by tower induction and then by cases on c, following the elimination
pattern of eval-step.
e case (vari) in [eq,cy]  Impossible by ex-falso (elt-upgr 4).

* casetruein [eq,¢5]  Unfold one coinductive layer of the RHS and rewrite

as follows.
(eval (case truein [eq,¢5])[0]).0ut
= (eval (casetruein [eq[o],e5]0]])).0ut by def.

“tau (eval ¢4 [o]) by def.

Similarly, after unfolding, the RHS reduces to
“tau (eval ¢; == A n > eval (nf-emb n)[o]).

The two “tau provide a synchronization and we conclude by coinduction

hypothesis on c;.
* casefalsein [cy,cp]  Same as previous case, with c,.

* v /vari  The LHS reduces to eval (v[o] o 7). In the RHS, the first
evaluation unfolds and reduces to "ret ((% = split-pat v), split-fill v), so that
the RHS as a whole can be rewritten to

eval (nf-emb ((7 = split-pat v), split-fill v))[o]

We rewrite and conclude as follows.
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(nf-emb ((2 = split-pat v), split-fill v))[o]

= (apply (var @) (split-pat v) (split-fill v))[o] by def.
= ((p-emb (split-pat v))[splic-fill v] 7 (var ©))[o] by def.
= (v, (vari))[o] by Lemma 7.13
= wlo] /(01) by def.

* v "¢  Unfold the LHS and rewrite as follows.

(eval (v 7 ¢")[o]).out
= (eval (v[g] /7 ¢/[o]pop], top]))-out by def.
= ‘tau (eval ¢/[o[pop], top][var, v[o]]) by def.
= “tau (eval ¢[var, v][o]) by sub. fusion

Unfolding the RHS reduces to
“tau (eval ¢’ [var,v] == A\ n > eval (nfremb n)[o]).

The two "tau provide a synchronization and we conclude by coinduction

hypothesis on ¢’ [var, v]
* split (var4) in ¢’ Impossible by ex-falso (elt-upgr 7).
* split (v,w) in ¢’ Unfold the LHS and rewrite as follows.

(eval (split (v,w) in ¢’)[o]).out

= (eval (split (v[o].w[a]) in ¢’[a[pop o pop, pop top, top]])).out by def.
= ‘tau (eval ¢/[o[pop © pop], pop top, top][var, v[o], w(o]]) by def.
= “tau (eval ¢[var, v, w|[o]) by sub. fusion

Unfolding the RHS reduces to
“tau (eval ¢ [var, v, w][g] == A\ n > eval (nf-emb n)[o]).

The two “tau provide a synchronization and we conclude by coinduction

hypothesis on ¢’ [var, v, w]

This concludes eval-sub. Although slightly tedious, it is not hard to prove.
As we will see in other instances, the pattern is always the same: analyzing
the configuration to make the evaluation reduce, upon hitting a redex, shift
substitutions around and conclude by coinduction. Upon hitting a normal

form, apply a refolding lemma and conclude by reflexivity.

Thankfully the other two properties are almost trivial. apply-sub is a direct
application of substitution fusion, as follows.



7.1.3 The Jwa Language Machine

pply o] 01[0]
— (penbo)lylol] 7 olo] by def.
= ((pembo)[v] " v)[o] by sub. fusion
= (applyvory)lo] by def.

eval-nf is proven by unicity of splitting after one-step unfolding, as follows.

(eval (nf-emb ((Z = 0),7))).out
= (eval (apply (var ¢) 0 7y)).out by def.
= (eval ((p-emb 0)[y] /* var4)).out by def.

“
= ret

((
= ‘ret ((i=0),7)

Lemma 7.18 (Jwa Finite Redexes):
The Jwa language machine has finite redexes.

to express the property using patterns instead of observations, for else the
notational weight would be unbearable. We need to prove that the relation

defined by the following inference rule is well founded.

i:I'>a; o0p:patagy yy:domo; {val 5T v:valT —ay
Og:pat gy Yg:domoy V=T
H,:isvarv — L Hy:eval (apply v 0y 7y) & ret ((i=07),71)
bad Hy Hy: 01 < 04

What we will prove is in fact that this relation is empty, directly implying that
it is wellfounded.

neg

Assume o, g @ typ™ ¥, 07 : pat o and 04 : pat @y such that 07 < 0y. De-
struct the proof of 0; < 0,, introduce all the hypotheses as above and proceed
by case on v, as it is a continuation value, it can be either an abstraction or a
variable. If v := 7 ¢, apply v 04 7y reduces to (p-emb 04)[y] ,/* 7 c. Thisis a
redex, thus its evaluation start with “tau and thus H, is absurd as the RHS

starts with “ret. If instead v := var 1, then Hj is absurd. |

Remark 7.19: The above proof of finite redex is quite remarkable: as the rela-
tion is empty no “redex failure” can happen, i.e., evaluating the application of
anon-variable value 2lways creates a redex. “Low-level” languages such as Jwa
which are designed around first-class continuations usually have this stronger

property.

i = split-pat (p-emb 0)[7]), split-fill (p-emb 0)[~] by def.
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* For the beauty of the game, let us say that
a tiny generalization of the last proof step,
shifting an equivalence relation around a
bi-implication, is a very useful fact of any
symmetric transitive relation R, namely

that R (R =" R =" (<)) R.

This concludes the proof of the hypotheses for correctness. We may now deduce
Ogs correctness for Jwa. We will do it with respect to the standard final scope
) := ¢ » — B containing exactly one boolean continuation. To match common
practice, we also adapt the definition of substitution equivalence to use a notion
of big-step reduction ¢ {} b.

Definition 7.20 (Evaluation Relation):
Forc: cmd (¢ » =B) and b: pat B, define the following big step ecvaluation
relation.

¢ b= (fst (§) eval ¢) ~ ret (top = b)

Theorem 7.21 (OGs Correctness):
For all T':ctx™® and ¢;,cy: cmd T, if [eq]ay ~ [ca]ap then for all

v:T val}» (e » = B),
e [v] U true? 5 ey[y] § true? .

Lemma 7.4, Lemma 7.17 and Lemma 7.18, obtain

fst (§) eval ¢;[y] =~ fst ($) eval co[v].
Conclude by the fact that ~ is an equivalence relation*. [ |

equivalence.

Note that we obtain correctness only for commands in negative scopes. This is
easily dealt with, by defining an extended equivalence relation on commands in
arbitrary scopes I' : Ctx typ, which first quantifies over an ultimate pattern for
each type in I" and asserts OGs equivalence of the configurations substituted by
the given sequence of patterns. First, let us sketch the pointwise lifting from types
to scopes of several constructs related to patterns.

Definition 7.22 (Pointwise Pattern Lifting):

Define the lifting of pat and dom to scopes as follows.
pat® : Ctx typ — Type
pat' T'i={A: typ} 2T 5 A — pat A

dom* (T': Ctx typ) spat’ I' = cox™ 8
dom* e yi=¢

dom™ (T' » A) y := dom™ T (y o pop) ™ dom (7y top)
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Further define an embedding of pattern assignments into ordinary assign-
ments as follows.

p-emb* {T'} (y: pat*T'): T - val |» dom*
p-emb” 7y i := (p-emb (7 4))[aux vy 9]

We only give the type of the required family of renamings aux as it is not a joy
to write down.

aux {T'} (y:pat"T) {A} (:: T 5 A) : dom () C dom™

Using these tools we can define our OGs equivalence relation, extended to general
scopes.

Definition 7.23 (Extended OGs Equivalence):
For all I': Ctx typ and ¢y, ¢y : cmd I' define the extended Jwa OGs equiva-
lence as follows.

€1 & ¢ 1= (y: pat’ I') = [y [p-emb™ 3y & [eg[p-emb” MNar

And finally we recover correctness.

Theorem 7.24 (Extended Ocs Correctness):
For all T':Crxtyp and ¢, ¢p:cmd D if ¢ ~ ¢y, then for all
v:T {val > (¢ » = B),

c1[Y] U true? 5 cyy] I crue? .
Proof: By pointwise lifting of split-pat and split-fill applyied to 7, compute
a:pat' T'and B: dom™ o - val |- (¢ » = B). By ¢; 2 €y we have

[ei[p-emb* o] 3y ~ [eg[p-emb* ] 14-

concludes. n

Remark 7.25: Of course the extended correctness results would hold just as
well when considering NF bisimularity instead of the OGs strategy bisimilarity,
by following exactly the same step, replacing the Ogs interpretation by the N
strategy interpretation.

This concludes the instantiation of our generic framework for Jwa. Arguably,
although defining the actual data takes some getting used to, the proof mostly
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[30] Pierre-Louis Curien and Hugo Herbe-
lin, “The duality of computation,” 2000.

amounts to busywork. The only meaningful lemma to be designed and proven is

the refolding lemma.

7.2 Polarized pfi-calculus

This next instance serves as a demonstration of the limits of what is captured by
our axiomatization of language machines. Technically, the structure will not be
much different than for Jwa, simply scaled up. As such, we will give a bit less
details.

The pgi-calculus was introduced by CURIEN and HERBELIN [30] as a term assign-
ment for the classical sequent calculus. Its core idea is to scrupulously follow a
discipline of duality. The configurations of its evaluator can be understood as a
formal cug, i.e., a pair (¢ | e) of a term ¢ producing something of type A and a
coterm (i.e., a context) e, consuming something of type A. These producers and
consumers are truly on an equal footing and we consolidate both into a single
judgment of generalized terms indexed by “side annotated types” with A and

A respectively denoting the type of A-terms and A-coterms. Likewise, what is
usually called “variable” (term name) and “covariable” (context name) are consol-
idated into a single construction, such that the typing scopes of all judgments also

consist of side annotated types.

(and [i are the prime constructions respectively for terms and coterms, giving
their name to the calculus. The first can be understood as a form of call-with-
current-continuation, while the second is similar to a let-binding. More precisely,
the term /1 ov.c captures the current coterm it is facing, binding it to the fresh
covariable o and continuing the execution as the configuration ¢. On the other
hand, the coterm /i x.c captures the current term, binding it to the fresh variable
x and continuing the execution as c. In this form, the calculus in non-confluent

as witnessed by the following critical pair
qlab ize] & (pac |pzey) v oz pacg],

depending on which of /1 or i reduces first. A simple way to overcome this
non-determinism is to bias the calculus to either call-by-value, prioritizing /. or
call-by-name, prioritizing /i. We adopt the other standard solution, arguably more
general, which is to parametrize configurations by a mode, or polarity, recording
whether they are currently in call-by-value mode (v) or call-by-name mode (n).
This polarized pji-calculus thus has the ability to express both execution strate-
gies. In effect, each type is assigned a polarity, and the polarity of a configuration
is determined by the type on which it is cutting. The type system is entirely sym-
metric with respect to polarity, so that every type former has a dual of opposite



polarity. Do not confuse the CBv-CBN duality of type polarities with the pro-
ducer-consumer duality of terms and coterms as the two are entirely orthogonal!
The distinction between producer and consumers is the one between programs
and continuations, while the distinction between CBv and CBN is between strict
and lazy programs (and between lazy and strict continuations). Because of the
profusion of dualities we have deliberately avoided the “positive” and “negative”
nomenclature of polarities.

The concrete way by which the priority of the /1 or /i rule is managed is by
restricting both of their reduction rules to only apply when the other side of the
configuration is a (co)value. Now pay attention because the different dualities

mingle!

* A value of CBV type is a new syntactic category included in terms, the weak
head normal terms, consisting of variables and of comstructors of that type.
* A covalue of CBvV type is simply a coterm of that type.
-od£a 1e o wron e A[dwrs stad£y) NgD Jo oneA Y .
"adA1 30U JO $40297.4252p JO PUE SI[QBIIEAOD JO SUNSISUOD SUtA107 [P ULLOU PVIY

ywom ‘swi1210d up papnjour £10331d opoeIuLs mou e st adL) NFD) JO IN[EAOI Y o

We hope that all the symmetries are enjoyable. The consequence is that at a CBv
type, the /1 reduction rule will fire across any coterm, while the /i rule will only
fire across a weak-head normal term (of which /s is not). The opposite happens
at CBN types.

Technically, our polarized presentation approximately follows the one from
DownNEN and ARrIoLA [33], obtaining a middle ground between their SYSTEM
L and System D. For a more general introduction to unpolarized pfi-calculus,
we can recommend the tutorial by BINDER ez a/ [20].

Without further ado, let us jump to the formal definition of types and syntax.

Definition 7.26 (Types):
There are two kinds, or polarities, given as follows.

pol: Type:=v | n
The syntax of open types is given by the inductive family
typ® (@ : Cx po|) : pol — Type

whose constructors are given below.
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[33] Paul Downen and Zena M. Ariola,
“Compiling With Classical Connectives,”
2020.

[20] David Binder, Marco Tzschentke,
Marius Miiller, and Klaus Ostermann,
“Grokking the Sequent Calculus,” 2024.
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in AGDA, for Fun and Profit,” 2019.

A:typ?©Ov B:typ® Ov

Tiopo®On 1:typ?©v L:typ®©On AR B:typ’©Ov
A:typ°©On B:typ?©On A:typ®©Ov B:typ’ Ov

A% B:typ®©n A®B:typ°Ov
A:typ?©n B:typ?©On A:typ” ©On

A& B:typ?©n lA:typ° Ov
A:tp?Ov A:typ®©On A:gp®Ov A:typ® (> v)v
TA:typ°On ©A:typ°Ov —A:typ°On  pA:typ° Ov
A:typ® (©» n)n i:02p

VA:typ?©n  wari:typ® ©p

Define (closed) #ypes by the shorthand typ := typ” .

Lemma 7.27 (Type Substitution):
Open types typ® form a substitution monoid. We will write A/B for the

topmost variable substitution A[var, B].

The types of our language thus comprise the usual bunch of empty, singleton,
product and sum types, each in their Cav (0, 1, ®, ®) and CBN (L, T, &,
7Y) variants. We then have the two shifts, | for thunks of a CBN type and 7 for
returners of a CBV type, and two negations (S, —), for continuations of the two
polarities. Finally, we do not consider existential and universal quantification,
but replace them by two fixed point types, /. for inductive-like types and v for
coinductive-like types.

Remark 7.28: The above type variables and type substitution might raise
some questions. In the context of a formal development, it is well-known that
formalizing polymorphic calculi is quite involved, in particular in this well-
typed-and-scoped style [24]. Moreover, our generic OGs construction only
supports simple types. Here though, we only need to mention open types in
passing, to express recursive types. The rest of the formalization will be solely
concerned with closed types. Indeed, recursive types, in contrast to existential
and universal types, do maintain a constant type-variable scope throughout the
term syntax. In particular, proving OGs correctness will zot require any law on

substitution or renaming of types.

Remark 7.29: Theinclusion of the recursive /. and  types is mainly motivated
by making the language non-terminating, as indeed they should allow us to

write a fixed point combinator. A classical case study is then to show that any
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two fixed point combinators are normal form bisimilar, hence substitution

equivalent, as e.g. done by LassEN and LEvy [58] for a Jwa with recursive  [58] Seren B. Lassen and Paul Blain
Levy, “Typed Normal Form Bisimulation,”

types. However, because both normal form bisimulations and the precise lan- o

guage machine instance presented here, have not yet been entirely mechanized
in the Rocqartifact, we will not do this case study on fixed point combinators.
We nonetheless present the language with recursive types here, to show off how
their expressivity still fits into our language machine axiomatization.

Definition 7.30 (Side-Annotated Types):
Define side-annotated types typ” : Type by the following constructors.

A:typp A:typp

TA: typ? A typ?®

Note that we will use © and ~ with very weak parsing precedence, allowing us
to write, e.g., TA Y B.

Define side-annotated type dualization AT as follows.

(fA) =4
(A =4
Definition 7.31 (Syntax):

The pfi-calculus syntax is given by the following mutually defined inductive
family of judgments, respectively for configurations, generalized terms and
generalized weak-head normal forms.

o ctx — Type

LU etx = typ® = Type

oYL etx = typ® — Type
The constructors are given in Figure 7.2
Further define the following shorthands.

conf := _ ¢

t
o

term := _ F

whn = ",
Define the family of generalized values as follows.

val : ctx = typ® — Type
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val ' (TA:typv) == whn ' TA
valT' (“A:typv):=term I A
valI' (TA:typn)i=termIT' TA
vall' (“A:typn):=whnT A
Lemma 7.32 (Substitution):
pfi-calculus values form a substitution monoid, and pfi-calculus configura-
tions form a substitution module over it. Moreover, val has decidable variables.
Proof: All by mutual induction on configurations, terms and weak head
normal forms. This is not entirely easy, as the statements need to be proven
in a particular order, but it is standard metatheory so we will not give further
details. [ ]
A:typp t:THTA e:TH A c:T'» Ak c:I'» TAES v:I'FY A
(t|ple): T k< pe:THTA pe:TH —A whno: ' A4
i:I'>A c: Tk
vari: 'Y A Loth: THY 0 AT EY T (): T v "1 fyter: T 1
c: T'F¢ w:I'E"TA w,: T "B c:T'» TA» TBES
Adey:TEY L [J:TFv L (wywg): T'HFY TA® B fotct: THY "A® B
c:I'» "A» Bt w:I'E""A w,:T'H" B v:I'EYTA
Agle} : THYTAN B [wy,wy] : T'HY A% B inlv: 'Y "TA® B
v: 'Y B c: > TAFS ¢y:T'» TBES c:I'» A ¢y:T'» BES
intv: T'HYTA® B Lglepcot: THY "AD B Aglepeqb: THYTAL B
v: Y A v: 'Y "B
fsto: Y A& B sndv:T'HY A& B
t:T'H A c:T'» TAES c:T'» AL t:T'H A v: 'Y A
Wt THY*lA Afdep:THY LA Adep: T HY 1A Tt:THY T4 cv:THYT6A
c:T» Ake c:T» TARS v:THYTA v:I'HY TA/LA
fler:TH A A f{c}:T v -4 [ E—Y conv: DY TuA
c:T» TA/pA c:» "A/vA LS v:THY ~A/VA
/\H{c} T HY A Act:THY WA outw:THY VA

Figure 7.2 — pfi-calculus Syntax




7.2.1 Patterns

We now define the infrastructure for patterns: first the observable subset of side-
annotated types, which will appear in the OGs game, then the patterns, their
embedding into values, and finally the splitting of values into a pattern and
a filling, together with the associated refolding lemmas. In Jwa we called the
observable types “negative”, but here this word is already quite overloaded so
we call them “private” instead. Recall that these are the types that will appear in
the OGs construction, as they denote syntactic objects whose sharing between
players is mediated by variables. Their definition follows the pattern of values,

with only CBV consumers and CBN producers being considered private.

Definition 7.33 (Private Types):
Define private types as a subset of types given by the following predicate.
is-priv : typ® — SProp
is-priv (TA: typv) := L
is-priv (*A: typ v) =T typ‘m" ::ftypg is-priv
is-priv (tA: typn):=T ctxPriv = [ (Al is—priv)
is-priv ("A:typn) = L
With syntax, values and private (OGs) types defined we can properly start the

language machine instantiation. This starts by defining observations, and as for

Jwa, we first go through the dual notion of pazterns.

Definition 7.34 (Patterns):
Define the inductive family of ultimate patterns pat: typ® — Type with

the following constructors.
A:tpn
.\,{x ipat TA
A:typv pr:pat TA py:pat TB
mh:pac A ()Pipat Tl [[Pipac L (pypy)P:pat TA® B

pr:pat A py:pat B p:pat TA p:pat B
[p1.po]P :pat TAW B inlPp:paa TA®B intPp:pat TA® B

p:pat A p:pat B p:pacTA
fstPv:pat A& B sndPv:ipat A& B [Pp:pat TLA
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p:pat A p:pat A p:pat TA p:pat TA/pA

1Pp:pat TA ©&Pp:pat T©A  —Ppipat A conPp:pat TpA
p:pat A/VA
out’ p: pat VA

priv

Define their domain by the function dom : pat A — ctx™" as follows.

A — +
dom M =eh A dom (fst? p) :=dom p
dom m% =c P A dom (snd? p) := dom p
dom ()P =c dom |Pp :=dom p
dom [J? i=c dom 17p :=dom p
dom (py,pg)? = dom py 4 dom p, dom (&Pp) :=domp
dom [p;.,py]” := dom py + dom p, dom (=Pp) :=domp
dom (inl?p) :=domp dom (con” p) := dom p
dom (int” p) :=domp dom (out” p) :=dom p

With patterns defined, we introduce the embedding and splitting in one go. We
do notspell out their definition but only characterize it by its refolding properties

as writing them down would become quite unwieldy.
Definition 7.35 (Value Splitting):
Define the following functions
p-emb {A} (p: pat A): val (dom p) A
splic-pat {I: coxP™} {A}: val D A — pac A
splicAll {T': cox?™} {A} (v: val T A) : dom (split-pat v) —| val | T,
characterized by the following two properties.
(1) ForallT': cox™, A: typand v: val T A,
(p-emb (split-pat v))[split-fill v] = .
(2) ForallT': cox?™, A: typ,p: pat Aandy: dom p —{ val | T,
(p,7) & (split-pat (p-emb p)[], splic-fll (p-emb p)[]).

Proof: p-emb is defined by direct induction on patterns. split-pat is defined

through the following two mutually inductive auxiliary functions.
splitpat’ {T': cox™} {A: typv}: whn T TA — pat TA
split-pat” {T': cox?™} {A: cypn}:whn T “A — pat A
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Similarly, split-fill is defined through the following two mutually inductive
auxiliary functions.
split-fillY {T": coxd™} {A: typv} (v: whnT' TA)
: dom (split-pat’ v) 4 val |» T
split-fill” {T": coxd™} {A: typn} (v: whnT' —A)
: dom (split-pat" v) o val > T
The first property (refolding) is then obtained by similar decomposition into
two auxiliary properties respectively concerned with CBv weak head normal

terms and CBN weak head normal coterms. The second property (unicity of

splitting) is proven by direct induction on patterns. ]

We can finally give the pfi-calculus observations, as patterns at the dual side-
annotated type.

Definition 7.36 (Observation):
Define observations as the following binding family.
obs : Bind ctxP™ typ}“‘iv

Op A :=pat Af

bs :=
ovs holes p := dom p

7.2.2 pfi-calculus Language Machine

We now define the rest of the ufi-calculus language machine, namely the evalu-
ation and application maps.

Definition 7.37 (Evaluation):

Define evaluation by iteration of an evaluation step as follows.
eval {T': cox?™} 2 conf T — Delay (Nf\”lll“ F)
eval := iter (ret o eval-step)

eval-step {I": cexP™}: conf I — NfoPS T+ conf T

val

159
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eval-step (pelvle) := inr ¢[var, €]
eval-step (tn|pe) := inr ¢[var, t]
eval-step (whnwv|v|fic) := inr ¢[var, v
eval-step (peln| whnk) := inr ¢|[var, k]

eval-ste whn v |v| whn (var< :=inl ((2 = split-pat v), split-fill v
l-step h h 1 plit-p plit-fill

eval-step ( whn (var¢) [n|whnk ) := inl ((¢ = split-pat k), splic-fill k)
eval-step ( whn (varé) |v| whnk ) := ex-falso (elt-upgr )

eval-step (whnv |n| whn (vard) ) := ex-falso (elt-upgr %)

eval-step (whn () |v| whn £;{c} ) :=inrc

eval-step (whn A {c} |n| whn []) ==inrc

eval-step ( whn (vy,v5) [v| whn £ {c} ) = inr c[var, vy, vy]

eval-step ( whn Ay{c} [n| whn [kq,ks] ) := inr c[var, kq, ko]

eval-step  (whn (inl w) [v| whn £Lg{ey,cp} ) = inr ¢ [var, 9]
eval-step  (whn (inr v) [v| whn £Lg{cy,cp} ) = inr cy[var, v]
eval-step ( whn Ag {c;,¢5} [n| whn (fst k) ) = inr ¢; [var, k]
eval-step ( whn Ag, {¢;,¢5} [n| whn (snd k) ) := inr ¢y[var, k]
eval-step (whn |t [v| whn £ {c}) := inr ¢]var, t]

eval-step (whn Ay{c} [n| whn Je ) inr ¢[var, €]

eval-step ( whn ©k |v| whn L4{c}) := inr ¢|var, k]
eval-step (whn A_{c} [n| whn —w ) := inr ¢[var, v]
evalstep  ( whn (con v) |v| whn £ {c}) := inr ¢[var, v
eval-step (whn A {c} |n| whn (out k) )  :=inr c[var, k]

Remark 7.38: It should not be obvious, but it can be checked that all the
(co)terms and weak head normal (co)terms by which we are substituting are
indeed (co)values, with the type polarity and side annotation properly lining

up.
Definition 7.39 (Observation Application):
Define observation application as follows.
apply {T: coxP™} {A: cypP™} (v: val T A) (0: obs.Op A)
: obs.holes 0 | val |+ ' — conf T’
apply {T} {*A} v oy == (v[n] (p-emb 0)[7])
apply {T} {7 A} v oy := {(p-emb 0)[y] V| v)
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We can now define the language machine.

Definition 7.40 (Language Machine):
The pfi-calculus language machine is given by the following record.

MM : LangMachine obs val conf

eval := eval
MM = apply = apply

eval-ext = ...

apply-ext := ...

Let us now sketch the proof of the correctness hypotheses.

Lemma 7.41 (i Respects Substitution):
The pfi-calculus language machine respects substitution.

Proof:
* evalsub  GivenT, A: cox?™, ¢: confT'and o : T —| val |+ A, we need

to prove the following.
eval efo] & eval ¢ == A n > eval (nf-emb n)[o]

Proceed by tower induction, then pattern match on ¢, following the case
tree of eval-step. In case of a redex, i.e., when eval-step returns inr ¢’[y]
for some ¢’ and 7y, commute y and ¢ in the LHS and conclude by
coinduction hypothesis. In case of a normal form, i.e., when eval-step returns
rewrite (nf-emb ((¢ = split-pat v), split-fill v))[o] into either (v[o] |n| o %)
or (o i |v| v[o]), depending on the polarity of the type, and conclude by
reflexivity.

* apply-sub By direct application of substitution fusion.

* eval-nf By direct application of Definition 7.35(2). ™

Lemma 7.42 (uf Finite Redexes):
The pi-calculus language machine has finite redexes

Proof: As for Jwa, the pfi-calculus verifies a stronger property than well-
foundedness of <, namely that there for any observation 0,, there isno 0; such
that 0; < 0,. In other words, applying an observation to a non-variable value
necessarily yields a redex. This is proven by direct case-analysis of the value and

the observation. | |

We can now conclude correctness of the OGs interpretation w.r.t. substitution

equivalence.
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Definition 7.43 (Evaluation Relation):
For ¢: conf (¢ » ~1), define the following big step evaluation relation.

cd ()P = (st (§) eval ¢) ~ ret (top = ()P)

Theorem 7.44 (OGs Correctness):
For all T:ctxP™ and ¢, cy: conf Ty if [e;]as & [es] sy then for all

v: T valf» (e » 1),
a4 07 < el On

Lemma7.32, Lemma 7.41 and Lemma 7.42, obtain

fst (§) eval ¢;[y] =~ fst ($) eval co[v].
Conclude by the fact that ~ is an equivalence relation. [ |

We will stop here and skip the NF bisimulation correctness as well as the extended
results for configurations in arbitrary (non-private) contexts I' : ctx. If needed,
these can be obtained exactly as for Jwa, by patching the OGs or NF interpreta-

tion equivalence to first quantify over patterns for each type in I'.

7.3 Untyped Weak Head A-calculus

Our first two examples were in several aspects quite similar: two simply-typed
languages, rather low level and centered around explicit control flow using some
form of first-class continuations. Let us now turn to a radically different language:
pure untyped A-calculus with weak head reduction semantics. There will be
several hurdles to overcome, so let us give an overview, in increasing order of

difficulty.

Typing  Thelanguage is untyped, but our framework for substitution requires
some set of types. This is quite easy to overcome with a benign change of
perspective, as we can see any untyped language as an unityped language, that is,
alanguage with a single type.

Configurations  The language is presented with natural deduction style judg-
ments, as opposed to language machines and the first two examples, which have
sequent calculus style judgments. What we mean by this, is that the A-calculus
is usually presented without any notion which would be similar to a language
machine’s configurations: the thing on which the evaluator operates and which

is only indexed by a scope. The way out is two-fold.
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First, we switch to a common, but perhaps not the most standard presentation of
weak head reduction: some variant of the KRIVINE machine [29]. This is a bit of
a goalpost moving, as arguably we will not present a A-calculus language machine
but rather a KRIvVINE language machine. However it is best to go with the flow
of the axiomatization and adopt the abstract machine mindset. This will pay off

when proving the correctness theorem hypotheses.

Second, since continuations, a.k.a. stacks, will start floating around our KrR1vINE
machine configurations, we will need to introduce formal continuations, i.e., a
new kind of variable denoting continuations. Indeed, during the OGs game and
in the NF interpretation, we will need to exchange symbolic continuations with
our opponent. To distinguish them from the already existing “term” variables
there is a simple mean: typing. We had a single type, now we already have two: one
for terms and one for continuations. To avoid confusion, we will stop referring

to them as types and instead call them sorts.

In a sense, our KRIVINE machine will operate on radically open configurations,

in the sense that not only terms might contain free variables, but also stacks!

Observations  The usual intuition behind the design of the binding family
of observations is that they denote some kind of copatterns, or eliminators. This
understanding is enough to get a satisfying definition when the language already
circles around this concept, like our first two examples. More pragmatically, as
our axiomatization derives the normal forms from these observations, we better
engineer them to fit the normal forms we intend to have. For call-by-value A-
calculus, as sketched in the introduction (§1.3), it does not take much squinting
to see that the two shapes of normal forms—a value and a stuck application in an
evaluation context—do indeed look like eliminators. Namely calls (on opponent

functions) and returns (on implicit opponent continuations).

For weak head reduction A-calculus, there are two shapes for normal forms:
lambda abstractions Az.T and stuck applications xT7 ...T;, . Applications are not
too difficult to see as being eliminators. We deduce that in this world, functions
are eliminated by giving not one but a whole spine of arguments. In fact, one
can recognize this spine as a stack, which is nice since our earlier choices start to
make more sense. However, the lambda abstraction is rather devilish. It does not
look like it is stuck on anything, so once again, this must be an elimination on an
implicit context/stack variable. But which part of Az.T is the pattern (the static
part) and the filling? Lets look at it backwards: what kind of elimination would
make sense for a stack? Stacks are sequences of terms, so it would make sense to
pattern match on them. And indeed, the Az.T normal form is simply a request to
grab the next argument from the stack. If the stack is empty, this request cannot
be fulfilled. But if it is not, the opponent may answer the request by a “here it is”,
giving us two new handles, a term variable for the head and a stack variable for

[29] Pierre-Louis Curien, Categorical Com-
binators, Sequential Algorithms, and Func-
tional Programming, 1993.
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the rest. Another way to look at requests is to understand them as fully evaluated,

or forced functions.

Putting things back together, what we just did is to introduce a #hird sort,
for argument requests, which will accordingly need be accompanied by request
variables. Eliminating a stack introduces a new reguest variable for the opponent,

and eliminating a request introduces a term variable and a stack variable.

Let us formalize that!

7.3.1 Syntax and Semantics

Definition 7.45 (Sorts):
Define sorts as the following data type.

sort: Type := tm | stk | req
Further define contexts by the following shorthand ctx := Cex sort.

Instead of writing three mutually defined judgments for terms, stacks and
requests, we will simply use a single syntactic judgment, indexed by sorts. This
will have the happy side effect to fuse the three different variables in a single
sorted construct. Note that we did not talk a lot about configurations, but they

unsurprisingly pair a term with a stack.

Definition 7.46 (Syntax):
Define the unified judgment for synzax as the data type syn : Type

Ctx, sort

with the following constructors.

I'>s a:synTtm b:synT tm 7:syn I req

vari:synI's a-b:syn tm |7],:synT tm

a:syn (> tm)tm  a:synTem  k:syn T stk

Aa:synT req a:k:synT stk

Further define the judgment for configurations as the data type

conf’: Type™™ with the following constructor.

a:syn'tm  k:syn stk

(a|k):confl

Remark 7.47: One may be surprised by the absence of empty stack: the base
case for stacks is provided by the stack variables.
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Lemma 7.48 (Substitution):

The family syn forms a substitution monoid with decidable variables, and conf
forms a substitution module over it.

Proof: Although the meaning of syn is perhaps still puzzling, it can be
opaquely viewed as an arbitrary syntax with bindings. As such, the renaming

and substitution operators and their laws can be derived by standard means.m

We can now define the binding family of observations. Because technically there is
exactly one observation at each sort, we could take the tricky A s =+ 1 definition.
The holes map would be quite puzzling though, so that we prefer defining a
special purpose family and give these observations nice names.

Definition 7.49 (Observations):
Define the family of observations as the data type o-fam : Type** with the
following constructors.

force: o-fam tm grab : o-fam stk push : o-fam req
Define their domain by the following function.

o-dom {s} : o-fam s — ctx

o-dom force := € P stk
o-dom grab := ¢ » req
o-dom push =& » tm » stk

Further define their binding family as follows.

obs: Bind ST
Op s

o-fam s

holes 0 := o-dom o

Let us recapitulate. We have a force observation on terms, which has one
argument: a stack in which it should be evaluated. We have a grab observation
on stacks, which has one argument: a request, that is, a lambda abstraction. And
finally we have a push observation on requests, which has two arguments: a head
term and a tail stack. We are ready to see the evaluator.

Definition 7.50 (Evaluator):

Define the evaluation map by iteration of the following evaluation step map.

eval {T'} : confT' — Delay (Nﬂ‘\’,l"; F)

eval := iter (ret o eval-step)
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obs 4 conf T

syn

eval-step {T'} : conf I — NI,

evalstep  (varé| k)  :=inl (3 » force, [k])
evalstep  (a-b|k) i (albk)
evabstep (|7, | vard) : mu « grab, [r])
evalsstep { [var ), | b+ k) 1(2 push, [b, k])
evalstep ([Aal, | b= k) =inr (afvar,b] [ k)

Let us rejoice! The journey to obtain this may have been convoluted, but the

resulting observations and evaluator are even shorter than for Jwa. But before

jumping to the proofs, let us actually define the observation application map and

finally the language machine.

Definition 7.51 (Observation Application):
Define the observation application map as follows.

apply {T" s} (z:synT' s) (0: o-fam §) : o-dom 0 —| syn |+ T' — conf T’
apply a force v := (a |~ top )

apply k grab y = ( [y top],. [ k)

apply 7 pushy == (|r], | v (pop top) :: ¥ top )

Definition 7.52 (Language Machine):
Define the Kr1vINE language machine by the following record.

KRIVINE : LangMachineﬂm syn

KRIVINE :=
eval := eval
apply == apply
eval-ext := ...
apply-ext := ...

Lemma 7.53 (Machine Respects Substitution):

The Kr1vINE language machine respects substitution.

Proof:
* cvalsub  GivenT',A: ctx,c: confTando: I' { syn |» A, weneed to

prove the following statement.
eval ¢fo] & eval ¢ == A n > eval (nf-emb n)[o]
Proceed by coinduction, then destruct ¢ following the pattern of eval-step.

» When c:= (vari | k), by reflexivity.
» Whenc:= (a-b| k), by synchronization and coinduction hypothesis.
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» Whenc:= ( |r], | var i), by reflexivity.
» Whenc:= ( [vari], | b k), by reflexivity.
» Whenc:= (|[Aal,|b: k), the LHS is definitionally equal to

“tau (eval (a[o[pop], top][var, ] | k[a] )).

Rewrite it to the following and conclude by synchronization and coinduc-

tion hypothesis.

“tau (eval ( a[var, b][o] | k[o] )
* apply-sub By direct case analysis on the observation.

* eval-nf By direct case analysis on the normal form. n

Lemma 7.54 (Finite Redexes):
The Kr1vINE language machine has finite redexes.

Proof: Recall that we need to prove the following relation to be well-founded.

i:I'>s; oy:ofams; v;:odomoy syn|=T z:synT sy
09:0-fam sy 7yy:o0-domoy —{syn|> T Hj:isvarv— L
H, : eval (apply z 0g 7) 22 ret ((1+01),71)

bad Hy Hy: 01 < 0g

We will show that this relation only contains push < grab, push < force and

grab < force. As such it has chains of length at most 3 and is thus accessible.

Assume sy, Sy : sort, 01 : o-fam 8 and 04 : o-fam 4 such that 0; < 04. De-
struct the relation witness and introduce all the hypotheses as above. By case

on 0y, let us determine o; .

(1) When oy := push, then & must be a request.
* When x := var 4, then H is absurd.
* When  := \ a, then H, is absurd as apply (A a) push « will perform
an evaluation step.
(2) When o, := grab, then  must be a stack.
* When « := var i, then H; is absurd.
* Whenx :=b :: k,letr := «y top.
» When 7 := var 4, by H,, 0; must be push.
» When r := )\ a, then Hy is absurd.
(3) When o, := force, then z must be a term. Proceed by case on z.
* When « := var 1, then H; is absurd.
* When z := a - b, then H, is absurd.
* Whenz := |r|,, pose k := 7y top.
» When k := var 4, by H,, 0; must be grab.
» Whenk :=a = k', by caseon .

167
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[64] Jean-Jacques Lévy, “An algebraic inter-
pretation of the AB-calculus and a labeled
A-calculus,” 1975.

[63] Giuseppe Longo, “Set-theoretical
models of A-calculus: theories, expansions,
isomorphisms,” 1983.

[85] Davide Sangiorgi, “A Theory of Bisim-
ulation for the pi-Calculus,” 1993.

— When r := var ¢, by H,, 0, must be push.
— When r := A @, then H, is absurd. u

This concludes the correctness of the KrRIvINE language machine! Its NF
strategies from Ch. 6 can be recognized as LEvY-LONGO trees [64][63]. Thus,

observational equivalence, although this fact was already known [85]. This claim
should probably be properly justified better, by formalizing a clean representation
of these trees and proving them isomorphic to our NF strategies, but we will not
go further than this.

For the sake of it, let us simply state the normal form bisimulation correctness
theorem, for the last time in this thesis!

Theorem 7.55 (NF Correctness):
Define the weak head normalization predicate as follows.

o : conf (g » stk) — Prop

¢l == (fst (§) eval ¢) ~ ret (top = grab)

Forallt;,ty : syn I' tm such that

[[< tl[POp} | var top >ﬂ11§11<1\11\1: ~ [[< t2 [POP] H var top >]]i¥11<‘1\'mu
thenforallo: T’ —{ syn |+ (¢ » stk) and k@ syn (e » stk) stk

(tifo] [ k)« (ty[o] [ k)L

Proof: By application of S to KRIVINE, ty, t5 and [0, k], with

hypotheses proven in Lemma 7.48, Lemma 7.53 and Lemma 7.54, obtain the

following.

fst ($) eval (¢4 [pop] | var top )[o, k]
~ fst (§) eval (&y[pop] || vartop )[o, k]

Conclude by substitution fusion and equivalence. [ ]

We could further post-process the above theorem to obtain a statement on the
more standard A-terms and evaluation contexts, as they embed into our KRIVINE
machine syntax. This would clear away our non-standard stack and request vari-
ables, but we will stop our case study at this point.



Perspectives

I hope that this thesis has somewhat demystified operational game semantics to

the type theorist. Let us review some of the most important steps we have taken.

* We started off in Ch. 2 by presenting a new data structure for coinductively
representing automata in type theory. This puts a new item in the already
large bag of constructions based on polynomial functors. But perhaps most
importantly, we demonstrated that with a small twist, namely splitting these
polynomials in halves, we can obtain well-behaved game descriptions. Thanks
to this, finely typed automata prove quite suitable to represent strategies for

dialog games inside type theory.

* Next, in Ch. 3, we introduced a small proof pearl: scope structures. They
untie the intrinsically scoped and typed theory of substitution from the (too)
concrete DE-BRUIJN indices. This brings a bit more flexibility in the practical
formalization of syntactic objects. Subset scopes in particular were of great use
in the Ogs instances we have shown (Ch. 7), although it mostly smoothed the
work behind the scene, so you may have to take my word for it*.

* In Ch. 4 we arrived at operational game semantics. We constructed a generic
Ogs model, proposing an axiomatization of languages with an evaluator for
open programs. This axiomatization is inspired by abstract machines, taking a
computational approach to operational semantics. Most notably, it leaves the

syntax entirely opaque and devoid of any inductive nature, to be contrasted,

e.g., with structural operational semantics [79]. Yet this is enough to construct
an OGs model, and to prove it correct w.r.t. an observational equivalence
under suitable hypotheses (Ch. 5). This underlines that much like denotational
semantics, operational semantics can also beneficially manage to push the

clutter and technicalities of syntax out of sight.

* Finally, we reaped some rewards from all of these constructions. First we gener-
ically defined normal form bisimilarity, proving it correct by going through
Ogs strategy bisimilarity (Ch. 6). Then, we instantiated our language axioma-
tization with three standard calculi (Ch. 7).

As always, there is the feeling that we have barely started scratching the surface.
Formally proving this correctness theorem turned out to be a long and narrow
track. Along the way we zoomed past many opportunities for more in-depth
study. Furthermore, although we already capture a number of languages, the level
of generality of our OGs model could be improved. Indeed, we neither handle

effectful languages (apart from partiality), nor polymorphic type systems, two

* As I recall, when I stopped working with
the “wrong” notion of variable and intro-
duced subset scopes, I cut the size of the
Rocq code for the polarized wfi-calculus
instance by roughly a third.

[79] Gordon D. Plotkin, “A structural ap-
proach to operational semantics,” 2004.
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features for which OGs models have already been demonstrated [54][59][49].
Let us discuss in more details what we managed to glimpse from a couple of these
windows into the unknown.

Games and Open Composition  Although category theory concepts are
structuring our development behind the scenes, we have made the choice to min-
imize their amount. Besides making the manuscript slightly more accessible, it is
a pragmatic implementation choice, as category theory mechanization in inten-
sional type theory is notoriously a can of worms. However, LEVY and STATON’s
games and strategies, presented in Ch. 2, enjoy a rich categorical theory, which we
have mostly skipped over. As a consequence, we did not say anything about the
properties of OGS as a game, beyond the trivial fact that it is symmetric.

First of all, games are regularly used as models for (parts of) linear logic. It would
be interesting to see how our notion of games fare in this respect. In fact our OGs
game is strongly reminiscent of “bang” games in typical such interpretations. In
both cases, the game position is a list (or scope) of possible game copies to choose

from, and moving spawns new possible positions (by concatenation on this list).

But linear logic is not the sole provider of structure on games, as CONWAY also
studied quite similar objects. Slightly more precisely, it is not too difficult to see
the following definition (which we saw in passing in §2.2.3) as creating a variant
of the CoNwAY sum of two games.

otp ot HGame I' T — HGame J J — HGame (I x J) (I x J)

Move (i, 7) := A.client.Move i + B.client.Move j
A+, B:=|next (i,7) (inl m) := (A.client.next m, j)
next (i,4) (inr m) == (4, B.client.next m)

oo Game I' T — Game J J — Game (I x J) (I x J)

AL B client := A.client +,, B.client
server := A.server +; B.server

Then, we conjecture that OGsg, + Ocsg ~ OGsg, where & denotes a game

bisimulation, i.e., an isomorphism between their respective sets of moves, medi-

ated by a suitable relation between their respective sets of positions. We have

preliminary results in this direction, but using a slightly different formulation of

OGsy, taking the cleaner absolute point of view on the naive version presented

Like the linear logic % connective, this CONWAY sum provides a candidate
for game exponentials, as A = B := A" + B. This combinator enjoys a corre-
sponding composition operation, taking a strategy on A" + B and one on
B'+Ctoa strategy on A" + C. This could shed new light on our slightly



ad-hoc treatment of OGs game strategy composition. Our hope is that we will
then have the necessary scaffolding to define an gpen composition which does not
merely return some final observation, but a whole Ogs strategy. We conjecture
that at this point, by ditching this cumbersome final scope, we will be able to
slightly strengthen the adequacy theorem. This would yield a stronger conclusion
than correctness, namely that OGs model equivalence is closed under substitu-
tion (i.e., substitutive).

NF Strategies as a Language Machine =~ We conjecture that with a slight
tweak and a suitable definition of morphisms, NF strategies can be exhibited as
the terminal language machine. Let us unpack this! Define the family of config-
urations of this machine as active NF strategies and the family of values as the
eval map simply seeks the first “ret or "vis move of the given active NF strategy.
The observation application map apply is more problematic, but here comes
design of the application map. In our development we chose the flex one, which
additionally takes a filling as argument. We now switch to the tighter one, which
assumes the filling is given by fresh variables and thus simply extends the scope of
the returned configuration. In this second version, the application map for our
NFF strategies machine is just function application! A promising candidate for the

terminal arrow is then given by the NF interpretation [}

A happy benefit of this construction, is that although the NF language machine
does not support substitutions, we conjecture it has a pointed renaming structure

(extending Definiti ). As such, the Ogs machine strategy construction

Taking a step back, we conjecture that what is happening, is that our axiomati-
zation of language machines is exceedingly close to the definition of a big-step
system over the NF game. Since big-step systems consist essentially in a coalgebra
on a functor associated to the game, it should not come as a surprise that NF
strategies—the final such coalgebra—are indeed the terminal language machine.
This suggests taking a closer look at the various coalgebra presentations of game
strategies (small-step systems and big-step systems). Although they are usually
heavier to manipulate than their coinductive counterpart, their more intensional
nature can be at times useful.

A Logic for Strategies  Besides correctness w.r.t. observational equivalence,
a common property to investigate is the reverse implication, ie., completeness.
When both correctness and completeness are true, the model is said to be fully
abstract. Following game semantical insights, it is largely expected that our Ogs

model of effect-free languages can only hope to be complete when restricted to

8 Perspectives
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[78] Maciej Pirég and Jeremy Gibbons,
“The Coinductive Resumption Monad,”
2014.

Innocent strategies. Innocence is a property ofa strategy, essentially meaning that
it plays the same moves in any two observationally equivalent situations. Logi-
cally, it is a safety property, in the sense that it can be expressed as the inability to

play certain moves, solely based on the past history: no bad moves are ever played.

More generally, other similarly structured predicates are of interest in game
semantics, such as well-bracketedness (following a stack discipline for answering
questions) or visibility (only observing variables which are in the causal past). As
such it would be useful to design a logic for strategy properties, with temporal
features.

Such alogic on the traces arising from coinductive automata has already been pro-
posed in the case of non-indexed interaction trees [87][94]. There are even very
expressive frameworks for reasoning with arbitrary monadic computations [65].
We conjecture that it is possible to follow their lead and adapt these techniques
to the indexed setting.

Indexing, however, unlocks even more possibilities by building upon the theory
of ornaments [70][31]. Indeed, it is not too hard to enrich the positions of any
game to keep track of the history of what has been played. Then, any safety predi-
cate on strategies over a game can be baked into asafe game, by requiring any move
to be played to be paired with a witness that it is safe with respect to the current
history. Ordinary strategies for this safe game may then be proven equivalent to
the subset of strategies of the original game for which the safety property holds:
the fundamental theorem of correct-by-construction programming. Although
ornaments are still only known to some circles, the unreasonable effectiveness
of correct-by-construction programming in type theory is well established. We
believe that adapting this toolkit to our indexed trees could provide novel refor-
mulations and proof techniques for more advanced game semantical questions
in type theory.

Effectful Language Machines How do we scale our constructions and
proofs to effectful languages? This is the big question, as these languages are the
ones where OGs shine the most. The natural starting point is to weaken the

codomain of the evaluation map to
eval: CT — M (N, I')

for some arbitrary monad M, suitably modelling the language’s effects. We can
play this game of replacing every instance of Delay with M throughout our
development. What we shall obtain, is that disregarding indexing for simplicity,
our interaction tree monad has become the following coinductive resumption
monad [78].

Respr s X:=vA M (X+XA)



Notice that in the above situation, we do not have any “tau node anymore,
only "ret and "vis. Instead, to recover unguarded recursion we require that M
is (completely) ELcoT [78], intuitively that it behaves as Delay. But partiality
is ubiquitous when manipulating coinductive game strategies, as for example it
is entirely expected that under some circumstances, composition of two total
strategies may fail to be total. It is a sometimes overlooked practical insight con-
tributed by interaction trees, that for a whole lot of applications, partiality should
be built into the notion of automata. We thus conjecture that it would be more
fruitful to keep partiality under our control by reinstating the “tau nodes and
avoid depending on some particular language’s monad M for evaluation effects.
We should then study the following generalization of interaction trees, where M

is an arbitrary (of course strictly positive) monad.
itreeTpy o X =vA. M (X + A+ X A)

We conjecture that with a suitable notion of weak bisimilarity, this can be precised
to form the initial ELGoT monad with a monad morphism from M and a natural
transformation from 3. The hard part however, starts even before proving any
property: a good notion of weak bisimilarity remains elusive! In other words,
given a relator on M, we have some trouble defining a good relator onitree T/ 5,

for weak bisimilarity.

We could go on for quite some time, but perhaps this is already enough open

questions! Let us finish with more down-to-earth comments on our code artifact.

Proof Engineering  Throughout this thesis we have said very little of the
accompanying code artifact, but it leaves a lot to be desired as it is nowhere near
a reusable software library. As one would imagine, a number of design mistakes
have been made during the development and partially patched out, so that it
would greatly benefit from a thorough re-architecturing. In fact, because we tried
to remain faithful to the actual code, some of these oddities can at times be felt in

the present manuscript.

A particularly central point is the absence of any definition of sezoid. Reasoning
up-to some equivalence relation is central throughout this thesis, but it has
been worked out on a case-by-case basis (mostly for value assignments and for
interaction trees). As such the artifact is left with some definitions which are too
strict for some use cases (substitution structures and language machines). We have
tried to make up for this in the manuscript by appealing to a slightly nebulous
“extensional equality” written =, akin to a fictive type class. The clean solution
is quite simple: truly parametrize by setoids and setoid families instead of types

everywhere it is relevant.
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* https://github.com/lapinOt/ogs

Milder points include spinning off our theory of substitution into a more
complete and separate library. Indeed CoqQ currently lacks such a library imple-

menting a modern take on intrinsically typed and scoped syntax.

Please do not hesitate to check the online repository*: who knows, maybe by the
time you are reading these lines my compulsive tendency to shuffle code around
will have made everything tidier! On a more general note, do not hesitate to reach

out to me if any of the above ideas spark your curiosity.


https://github.com/lapin0t/ogs
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